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For the past two decades a large part of the research in the topology of 3-manifolds
has been done under the hypothesis that the manifolds are sufficiently-large, that is,
they contain properly embedded, incompressible surfaces. The notion of incompress-
ible surface was introduced by W. Haken and the power of this hypothesis was
exhibited in the work of F. Waldhausen. Until recently, the only known examples of
orientable, irreducible 3-manifolds that are not sufficiently-large were certain 'small'
Seifert fibred spaces; the only ones with infinite fundamental group are discussed by
Waldhausen in [5]. However, W. Thurston discovered that most Dehn surgeries on
the 'figure-eight' knot in S3 result in orientable, irreducible 3-manifolds that are not
sufficiently-large and not Seifert fibred. These new manifolds have infinite funda-
mental group (in fact, they are hyperbolic). This work has been extended by Hatcher
and Thurston to all 2-bridge knots in S3 [3]. The idea is quite straightforward;
namely, if M is obtained from M by doing Dehn surgery along a simple closed curve k
in M and M contains an orientable, incompressible surface, then the bounded
manifold M' = M — u{k), where u(k) is an open tubular neighbourhood of k, contains
a properly-embedded, orientable, incompressible and boundary-incompressible sur-
face. The problem is, therefore, to understand the incompressible and boundary-
incompressible surfaces in M'. This problem is, in its own right, extremely important
to the understanding of the structure of 3-manifolds.

In this paper we classify, up to isotopy, the orientable, incompressible and
boundary-incompressible surfaces in 3-manifolds that fibre over Sl with fibre a once-
punctured torus. (A once-punctured torus is a compact surface of genus 1 with one
boundary component.) We call a surface in M essential if it is properly embedded,
incompressible, boundary-incompressible, and not parallel to a surface in dM. In this
particular situation a properly embedded, incompressible surface is essential if it is
neither a boundary-parallel torus nor a boundary-parallel annulus. It follows from the
classification that if M contains no essential tori, then M contains only finitely many
(up to isotopy) essential surfaces. So, we can apply this knowledge to study manifolds
obtained by Dehn surgeries on a section of a torus bundle over S1. Here, we conclude
that most Dehn surgeries give manifolds that have no incompressible surfaces; and
therefore, these manifolds are not Haken and not reducible. We exhibit an infinite
family of such manifolds that are irreducible, not Haken, and have first homology with
Z2-rank equal to 3. All manifolds obtained by Dehn surgery on a section of a torus
bundle over S1 have Heegaard genus at most 3. Hence, this family of manifolds has
Heegaard genus equal to 3. It follows that they are not Seifert fibred (and not Haken)
and not obtained by Dehn surgery on a 2-bridge knot, since the Heegaard genus in
both of these cases is at most 2; thus, we have given infinitely many new examples of
non-Haken manifolds.

A special case of our considerations is Dehn-surgery on the 'figure-eight' knot in S3

(the complement of the 'figure-eight' knot fibres over S1 with genus 1 fibre). Here we
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give two new pieces of information. One is that the three-sheeted cyclic branched
covering of 53, branched over the 'figure-eight' knot is a Haken manifold; and another
is that while neither the 16 nor —16 Dehn surgeries on the 'figure-eight' knot are
Haken, both have four-sheeted cyclic coverings that are Haken. Both of these results
are obtained by exhibiting essential surfaces in the three- and four-sheeted cyclic
coverings of the 'figure-eight' knot space that do not project, under the covering
projection, to non-singular surfaces.

In § 1, we establish some of the preliminaries and the notation in which we work. In
§2, we construct four types of essential surfaces in once-punctured torus bundles. In
§ 3, we prove that an essential surface in a once-punctured torus bundle is isotopic to
one of the types that we constructed in §2. In §§4 and 5, we study the isotopy
classification of these essential surfaces. In particular, we prove that there are only
finitely many isotopy classes of surfaces of a given type (and we completely analyse the
situation in which there is more than one isotopy class of surfaces of the same type).
Also, we prove that in each bundle there are only finitely many types of surface, except
in the case that the bundle contains an essential torus. However, in this latter case we
describe the situation completely. In §6, we give a number of examples. Our methods
enable us to find all essential surfaces in a given once-punctured torus bundle M, and
describe the boundary curves of all essential surfaces in terms of a single coordinate
system (framing) on dM. We present the required algorithms in §6. In §7 we raise
some unanswered questions and make some conjectures.

Any notation or terminology which is not defined here is defined by Jaco in [4]. We
remark that throughout this paper we will be working in the differentiable category.
We will assume, without explicitly saying so, that the manifolds under consideration
are orientable, that submanifolds are properly embedded, and that intersections are
transverse.

The case when the once-punctured torus bundle is hyperbolic has been indepen-
dently studied by W. Floyd and A. Hatcher, using the techniques of [3].

1. Notation and generalities

1.1. A standard once-punctured torus
Let T be the once-punctured torus constructed by identifying four sides of an

octagon as shown in Fig. 1. Also shown are two simple loops a and b based at the
point x, and spanning arcs a, 6, c, a+, a., tf+, 6-.
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FIG. 1
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We note that the homotopy classes of the loops a and b form a free basis for
7Ti(7». Also, the loop aba~lb~l is freely homotopic to dT.

1.2. The homeotopy group of T
The homeotopy group of a manifold M is the group Jf(M) of homeomorphisms of

M modulo the subgroup of homeomorphisms that are isotopic to the identity. If M is
orientable, we denote by Jf+(M) the subgroup of isotopy classes of orientation-
preserving homeomorphisms. The homeotopy group of Tcan be identified with the
group GL2(Z), with ,# + (T) corresponding to SL2(Z) c GL2(Z).

Let a and (i be the left-handed Dehn twists about the curves a and b respectively.

FACTS. 1.2.1. The isotopy classes of a and p generate Jtf>+(T).
1.2.2. If h is a homeomorphism of T, let H be the induced automorphism of H^T).

Then the map h -* H induces an isomorphism from jf(T) onto Aut(Z + Z).
1.2.3. The homology classes of a and b form a basis for HX{T). We may use this

basis to identify Jf(T) with GL2(Z) (of course, Jf+(T) corresponds to
SL2(Z) cz GL2(Z)). Throughout this paper we will use this identification: isotopy classes
of homeomorphisms of Twill be denoted by 2x2 integer matrices with determinant ± 1.
Thus the isotopy classes of a and fi correspond to the matrices

A =
1 - 1

0 1
and B =

1 0
1 1

respectively.
1.2.4. Let P and Q be the two matrices

' -
»')•

These two matrices generate SL2(Z) and we have the familiar presentation of SL2(Z)
as Z 4 * Z i Z 6 ,

SL2(Z) = <P, Q: P4 = Q6 = 1, P2 = <23>-

Note that

A = QP, \ B = PQ, B~l=Q2P.

Finally, observe that P is the isotopy class of the homeomorphism cp of T that is
induced by rotating the octagon 90° in a counter-clockwise direction and Q is the
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isotopy class of the homeomorphism t/> of Tthat has period 6 and maps a to r, / to a,
and c to —fi.

1.2.5. An element H of Jf{T) fixes the isotopy class of an essential closed curve if
and only if the trace of / / i s ±2.

1.3. Bundles over Sl with fibre T

Two fibre bundles with the same fibre and base are said to be equivalent if there is a
fibre-preserving homeomorphism between them that induces the identity on the base.
They are weakly equivalent if there is a fibre-preserving homeomorphism between
them.

By the classification of fibre bundles over spheres, we know that the equivalence
classes of bundles over Sl with fibre T are in one-to-one correspondence with
conjugacy classes in jf(T). The conjugacy class that corresponds to a bundle is called
its characteristic class. Let the conjugacy class of an element H E Jf{T) be denoted by
[//]. Now if M and N are fibre bundles over S1 with fibre T and characteristic classes
[//] and [G], respectively, then M and N are weakly equivalent if and only if

In general a manifold may admit fibrations over S1, with the same fibre, which are
not weakly equivalent. However, this cannot happen if the fibre is a once-punctured
torus.

1.3.1. PROPOSITION (Murasugi). Let M and N be orientable 3-manifolds that fibre
over Sl with fibre a once-punctured torus. Then M is homeomorphic to N if and only if the
fibre bundle structures on M and N are weakly equivalent.

Proof. Clearly M and iV are homeomorphic if the bundles are weakly equivalent.
Conversely, suppose that M and N are homeomorphic. Let [//] and [G] be the

characteristic classes of the respective bundles. Observe that HX{M) and H{(N) are
presented with three generators and relation matrices

( / / - / | 0 ) and (G - /10)

respectively. Now the proof breaks into two cases.
Case 1. If trace(//) # 2 then it is easily seen, from the presentation above, that the

free subgroup of HX{M) has rank 1. Of course, HX(N) « H^M), so H^N) also has free
rank 1. Thus nx{M) and ny{N) each contain only one subgroup that is the kernel of an
epimorphism to Z. These subgroups must be the images of the inclusions
n^T) -*• n^M) and n^T) -*• n^N). The characteristic classes of the two bundles are
therefore determined by the actions, by conjugation, of n^M) and n^N) on n^T). It
follows that [H] = [ G 1 1 ] .

Case 2. In the case that trace(H) = 2 = trace(/C) the proof is based on a fact about
GL2(Z): namely that each conjugacy class of trace 2 in GL2(Z) contains exactly one
element of the form

1, where

If H is conjugate to ( ], tKen we see from the presentation of H^M) that n is the
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1
order of the torsion subgroup of HX{M) « H{(N). Thus G is also conjugate to. ,,

so [//] = [C].

1.4. Constructing bundles
Let F, Xu X2 be topological spaces, let yt: F x [0,1] -*Xh for i = 1,2, and let

>/: F -> F be homeomorphisms. Define XJnX2 to be the quotient space obtained
from Xv u X2 by identifying y,(x, 1) to y2(ti(x),0). Define XJ, , to be the quotient
space obtained from X{ by identifying y{(x, 1) to yx(r\(x), 0).

If y,: F x [0,1] -> X, and »/,-: F -» F are homeomorphisms for i = 1,..., n, then

is well-defined. This space clearly fibres over S1 with fibre F and characteristic class

[/ /noHn_l O. . .

where //, denotes the isotopy class of r\{. The spaces X,-, for i = 1,..., n, will be called
blocks in AT.

We will construct bundles over S \ with fibre T, in this way, using homeomorph-
isms r/,- which are powers of a or /?. To construct surfaces in these bundles we will
embed surfaces in each block so that, after identification of the blocks, the surfaces fit
together to give a properly embedded surface in the bundle.

1.5. Essential surfaces
We remark that in a 3-manifold, all of whose boundary components are tori, an

incompressible, boundary-compressible surface must be a boundary-parallel annulus.
To see this, perform a surgery along a boundary-compressing disk and observe that
the resulting surface must have a boundary component that bounds a disk on dM.
The new surface is incompressible and hence must be a boundary-parallel disk. This
implies that the original surface was a boundary-parallel annulus.

It is a corollary of this observation that any incompressible surface in a once-
punctured torus bundle over S1, which is not boundary parallel, is an essential
surface.

2. Examples

We will describe a number of surfaces in once-punctured torus bundles and prove
that they are essential. In the following section we will show that, up to isotopy, any
essential surface in a once-punctured torus bundle is of the same type as one of those
described here.

To describe these surfaces we will first compile a list of surfaces embedded in T x / .
We will then consider bundles of the form

where each block contains one of the surfaces in our list. The surfaces and maps rj; will
be such that after identification we obtain a properly embedded, connected surface in
the bundle.

Sometimes the surface constructed this way will be non-orientable. In this case we
will consider, instead, the orientable surface that is the boundary of a regular
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neighbourhood of the non-orientable surface. If S a M3 is a properly embedded, non-
orientable surface then we will use the notation S to denote the boundary of a regular
neighbourhood of S.

2.1. Surfaces in Txl
Let

Dx = , 1 ] ,

D2 = * x [ 0 , l ] u £ x [ 0 , 1 ] ,

D3 = a x [0,1] u 6 x [0,1] u c x [0,1].

Each D, consists of pairwise-disjoint, non-parallel vertical disks in Txl.
For each integer q ^ 0, let Sq be the surface defined as follows. Let a, a +, and a-

be the closed curves shown in Fig. 1 and let £ = <z.x[0,1]. Let S <= T be the
complement of the annular neighbourhood N of E, with a- and «.+ as its two
boundary components. Let c l 5 . . . , cM be parallel simple closed curves in N, numbered
in order with cx being adjacent to a-. The surface Sq is the union of S x {̂ } with a
number of annuli. If q < 0 add annuli joining a. x {j} to cx x {0}, a+ x {£} to
c . , x {1}, and cI + 1 x {0} to c,x {1}, for i = 1,..., \q\ — 1. If q > 0, add annuli joining
«._ x {-j} tocx x {1}, a+ x {j} tocqx {0}, andc1 + 1 x {1} toc.x {0}, for i = l,...,q—l.

A schematic diagram of Sq is shown in Fig. 2.

Tx{l}

Clx{0}...c_,x{0}

q < 0

Tx{0}
Clx{0}...c,x{0}

Tx{0}

FIG. 2

The surface S2 is shown in Fig. 3.
It is clear that Sq can be embedded so that the projection Txl

local homeomorphism Sq -*• T
T restricts to a

For each integer n the surfaces Ca „ and C6n are disks in Txl. The boundary of
Can consists of the four arcs

and

together with the four vertical arcs of the form p x [0,1] where p is an endpoint of a +
or a.. (Here a, a+, a,., 6,6+, and 6- are the curves shown in Fig. 1.) We define Q,n

similarly, replacing a by 6, 6 by a, and /? by a. These disks look like twisted saddle
surfaces—the surface Ca _2 is shown in Fig. 4, where Tx I is cut open along the disk
a, x [0,1].
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Tx{0}

Tx{\}

C, X {1}

c,x{0}

c2x{0}

\ . {1}

FIG. 3

Tx[0,1]

FIG. 4
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2.2. Annuli in bundles
The following surfaces are essential annuli contained in bundles whose character-

istic class has trace 0, ± 1, or ±2. We use the notation Im(D,) to denote the images of
the surfaces £>, for 1 ^ ii < 3 (defined in §2.1) in a quotient T x 7/n, a bundle over Sl.

(Imtf),))" c T x / / , , ,

(Im(D2)f c T x / / , ,

(Im(D3)f cTxIfa (Tx I fa is the trefoil knot space),

Im(D3)c Txlfa,

cTxI/ani neZ,

2.3. Tori in bundles
The following surfaces are essential tori contained in bundles whose characteristic

class has trace +2. Here we use Im(£) to denote the image of the surface £ (defined in
§2.1) in a quotient T xl / n.

Im(£)c Tx// a , , , n e Z ,
( I m ( £ ) ) * c T x / / , 2 4 , , neZ.

2.4. Spun surfaces in bundles
Let p, g, and n be integers with p > 0 and (p, <?) = 1. We may describe the bundle M

with characteristic class [/T] as follows:

M=TxI/idTxI/id..JidTxI/a»

p blocks

If each block contains a copy of the surface Sq, then these surfaces will fit together in
M to form a connected, properly embedded genus-1 surface with p boundary
components. (Connectedness is equivalent to the condition (p, q) = 1.) We will call this
the spun surface, S(p, q,n). A schematic diagram of S(5, 3, n) is shown in Fig. 5.

One could carry out the construction above using q>2a." in place of a". It is easily
checked that the resulting (non-orientable) surface is compressible unless p = 1. If
p = 1 and q = + 1 then we obtain a once-punctured Klein bottle, which is necessarily
incompressible. However, the boundary of its regular neighbourhood, a twice-
punctured torus, is compressible.

2.4.1. PROPOSITION. The surface S(p,q,n) is essential in the once-punctured torus
bundle with characteristic class [an] for all p, q with p > 0 and (p, q) — 1.

Proof. Let M be the infinite cyclic cover of M, and let S(p, q, n) be the inverse image
of S(p,q,n) under the covering projection. It suffices to show that §(p,q,n) is
incompressible in M, for this implies that 5(p, q, n) is incompressible in M. Since
S(p, q, n) is clearly not boundary parallel, it is therefore essential.

If M is identified with TxU in the obvious way then the projection M -* T
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S, c Txl

S(5,3, n)

FIG. 5

restricts to a covering projection S(p, q, n) -* T. Thus the inclusion

is an injection, so S(p, q, n) is incompressible in M.

2.5. Twisted surfaces
Let n(\),n(2),...,n(k) be arbitrary integers and let J 6 { —1,0, 1,2} have the same

parity as k. Consider the bundle

where
M =Tx I/an(l)Tx I/pn(2).../ynWTx / /„ ,

(7?, if k is even,
y =

a, if k is odd.

Then M contains k+ 1 blocks.
Let the ith block in M, where 1 ^ i ^ k, contain a copy of C(a, n(i)) if i is odd and a

copy of C{f>, n(i)) if / is even. Let the / c + l t h block contain the two vertical disks
(<z+ u aJ) x / if i is eue/7 and (^+ u<^_)x / if j is odd. After identification these surfaces
fit together to give a properly embedded, connected surface R. Notice that R is
orientable if k is even and R is non-orientable if k is odd. We define the twisted surface,
C(J; n(k),..., n(\)), to be the orientable surface R if k is even and to be the orientable
surface R if k is odd. The surface C(0; n(/c), ...,«(1)) has genus (y/c—1) and four
boundary components; the surface C(2; n(k),..., n(l)) has genus (|/c) and two bound-
ary components; the surfaces C ( l ; n(k),...,n{\)) and C(— 1; n(k),...,n(\)) both have
genus k and two boundary components.

Note that the bundle M has characteristic class

where
\PJC

c =

"(k)

A if k is odd,

B if /c is even.



394 M. CULLER, W. JACO, AND H. RUBINSTEIN

2.5.1. PROPOSITION. Let J,n(l),...,n{k), and M be as above. The surface
C{J; n(k),..., n(l)) is essential in M if and only if\ n(i)\ $s 2 for i = 1,..., k.

Proof. Let M be the cyclic cover, corresponding to the fibre, of the bundle

M = TxI/anluTxI/pnt2)...TxI/(l)J

and let S <= M be a component of the inverse image of C{J; n(k),...,n(\)) c M under
the covering projection. Clearly it suffices to show that S is incompressible in M. We
note that M is divided into blocks, which are inverse images of the blocks in the
bundle, and that each block in M meets S in one disk, which is embedded as in Fig. 4.
Let F be the union of the fibres along which the blocks in M are joined.

To prove the proposition we will consider the family of all compressing or
boundary-compressing disks for S in M. If this family is non-empty then there exists a
member D for which Dn F has the minimal number of components.

We will analyse the ways that this minimal disk can meet the blocks in M, and
conclude that such a disk exists if and only if \n(i)\ < 2 for some i= \,...,k.

Let X be a block of M with D n X # 0 . If we cut X along the disk X r\S, then we
obtain two solid tori as shown in Fig. 6. In order to see how D meets X, we shall
consider how D meets these tori.

SnX

SnX

FIG. 6

Consider one of the solid tori that has non-empty intersection with D. Its boundary
meets S in one disk, meets dM in two disks (labelled B), and meets F in a disk, Fd, and
an annulus, Fa.

These subsets of the torus are shown in Fig. 6. We will prove that D n Fd = 0. In
particular, it will follow that DnX is contained in only one of these two solid tori.

First, observe that there cannot be any simple closed curve components of F n D at
all. For if there is a simple closed curve component of F n D, then there is one, say o\
that is 'innermost' on D; that is, a' bounds a disk D' c F and D' n F = a'. Now, D' is a
disk in M and D' n F = dD'. However, F is incompressible, so 3D' also bounds a disk
in F. Using standard techniques we may replace D by a disk which meets F fewer
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times but has the same boundary. Thus, we arrive at a contradiction to the minimality
assumption for D.

So, suppose that a is an arc component of D n Fd. There are four possibilities for
such an arc.

(1) Both end points of a are contained in B. If this is the situation, then D must be a
boundary compression; and the arc or is a spanning arc of D with both end points in
3M. Among all the components of D n Fd that are spanning arcs in D with both of
their end points in 3M, consider one, say a', that is 'outermost' on D; that is, there is a
disk D ' c D with 3D' consisting of two arcs a' and 3', where 3' c 3D and D' nFd = a'.
Also, 3'adM. The disk D' a M has 3D' = a'u 3' with a' = D' n Fd and
3' — D' ndM. However, F is boundary-incompressible, and 3M is incompressible.
Therefore, by standard techniques we may construct a boundary-compressing disk
which meets S in the same arc as D, but meets F in fewer components than D. This
contradicts the minimality assumption on D.

(2) Both end points of a are in the same component of S n Fd. Here, the arc a is a
spanning arc of D with both end points in S. Among all the components of D n Fd that
have both end points in the same component of S o Fd, choose one, say a', that is
'outermost' on Fd; that is, there is a disk A e Fd, and dA consists of two arcs, a' and 3',
with 3' c Sn Fd and A n D = a'. Now, perform a surgery of D along A. The result is
two disks each of which meets F in fewer components than D. Moreover, at least one
of these disks must be either a non-trivial compressing disk for S or a non-trivial
boundary-compressing disk for S. In either case we contradict the minimality
assumption for D.

(3) One end point of a is contained in B and one is contained in S. Again, D must be
a boundary compression, and the arc a is a spanning arc of D with one end point in
3M and one end point in S. Since neither situation (1) nor situation (2) can occur, it is
possible to choose among all the arc components of D n Fd with one end point in B
and one end point in S one, say a'', that is 'outermost' on Fd; that is, there is a disk
A cz Fd such that 3A is the union of three consecutive arcs a', s' c S, and 3' a B, and
A n D = a'. Now perform a surgery of D along A. The result is two disks, each of
which meets F in fewer components than D. And, since s' c S and 3' c 3M, at least
one of these two disks is a non-trivial boundary compression for D. Again, this
contradicts the minimality assumption for D.

(4) One end point of a is contained in one component of S n Fd and one is
contained in another component of S n Fd. The arc a is a spanning arc of D with both
end points in S; and the arc a is a spanning arc of Fd and is parallel in Fd into an arc
component of Fd n B. Since none of the possibilities (1), (2), or (3) can occur, among
all the components of D n Fd there is one, say a', that is 'outermost' on Fd\ that is,
there is a disk A c Fd, 5A is the union of four consecutive arcs a', s c= S, 3' <= B, and
s' a S, and A n D = o'. Perform a surgery of D along A. In this situation, two disks
result, each of which meets F in fewer components than D. However, there is only one
of these two disks that is a candidate for a compressing or boundary-compressing disk
of S; its boundary is the union of two arcs, one in S and one in 3M. Denote this disk
by D'. Now, since the end points of a' are in different components of Fdr\ S, the arc in
3D' that is also in 3M runs between different components of 3S\ the disk D' must be a
non-trivial boundary-compressing disk for S. This contradicts the minimality
assumption for D.

In each possible situation we have arrived at a contradiction. We conclude that
DnFd = 0.
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Let X' denote the block in M that meets the block X along the component of F
containing Fa. Now, X' splits along S into two solid tori just as X did; furthermore,
the same argument as above for X applies to X'. Hence D is actually contained in the
union of two solid tori, one from X and one from X'', that are joined along the annulus
Fa. This union is again a solid torus and it meets 5 along an annulus as shown in Fig.
7. The annulus of S wraps around the solid torus | n(i) | times for some /.

n{i) | twists

FIG. 7

If D is a compressing disk then dD is contained in the annulus. This implies that the
annulus of S is compressible in the solid torus, so n(i) = 0 (Fig. 8(a)).

(a) n(i) = 0 (b) n(i) = 0

FIG. 8

(c) n(i) = ± 1

If D is a boundary-compressing disk, then D meets the annulus of S in one arc and
dM in one arc. Consideration of intersection numbers shows that this can happen
exactly when |n(i)\ = 0 or |n(i)\ = 1 (see Figs 8(b) and 8(c)).

2.5.2. REMARK. A stronger statement than that of Proposition 2.5.1 is actually true.
Let M be the manifold constructed by attaching a solid torus to M so that the
boundary curves of C(J; n(k),..., n(l)) are identified to contractible curves in the solid
torus. Let C(J; n(k),...,n(\)) be the surface in M obtained by attaching disks to the
boundary curves of C(J;n(k),..., n(l)). It can be shown by techniques similar to those
used in the proof of Proposition 2.5.1 that C(J; n(/c),...,n(l)) is incompressible in M if
and only if |«(/)| ^ 2 for i = \,...,k.

2.6. Summary
We have given four different methods of constructing once-punctured torus bundles

which contain essential surfaces other than the fibre. Next we will show that any
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essential surface in a once-punctured torus bundle can be constructed by one of these
methods.

This statement can be made more precise by means of the following definition. If S
and S' are surfaces contained, respectively, in the once-punctured torus bundles M
and M', then we will say that S and S' are of the same type if there is a bundle
equivalence from M to M' that maps S to S'. In the next section we will show that any
essential surface in a once-punctured torus bundle is of the same type as Im(D,)
or (Im(D,)f from §2.2, Im(£) or (Im(£)f from §2.3, S{p,q,ri) from §2.4, or
C(J',n(k),...,n(\)) from §2.5.

3. General position

Throughout this section we will let M be a once-punctured torus bundle over S1,
and S an essential surface in M. We will say that S is in general position provided that

(1) each component of dS either is contained in a fibre or is transverse to every
fibre,

(2) the projection of p: M -*• Sl restricts to a morse function on the interior of S
having distinct critical values,

(3) among all surfaces isotopic to S and satisfying (1) and (2), S has the minimal
number of index 0 or 2 critical points.

The usual considerations show that S can be moved by an isotopy so that it is in
general position. We will assume from now on that this has been done. The level sets
of p\s are, of course, the intersections of S with the fibres of M. By level arcs and level
curves we mean the components of non-critical level sets.

3.1. Level arcs
3.1.1. LEMMA. Each level arc of S is essential in the fibre containing it.

Proof. Since S is boundary-incompressible it suffices to show that each level arc is
essential in S. This follows from Condition (1) above.

3.2. Upper and lower level sets
Let x be a critical point of p | s with p(x) = t, and let / be the largest interval

containing t so that there are no critical values other than t in /. Let X be the
component of S n p~ '(/) that contains .v. We will call this the critical neighbourhood of
x. For small e, X meets the fibres p~1(t + e) and p~l(t — e) in 1-manifolds having at
most two components. The projections (via the local product structure) of these 1-
manifolds onto the fibre p~l(t) will be called, respectively, the upper and lower level
sets of x. (They are well-defined up to isotopy.)

If x is an index 0 or 2 critical point then one of the upper and lower level sets is a
contractible closed curve and the other is empty. If x is an index 1 critical point then
the upper level set for x is obtained (up to isotopy) from the lower level set by taking a
band sum in the fibre p~l(t). See Fig. 9.

Thus, given the lower level set for an index 1 critical point, the possibilities for the
upper level set correspond to the isotopy classes of arcs in the fibre which are disjoint
from S and have end points in the lower level set.



398 M. CULLER, W. JACO. AND H. RUBINSTEIN

lower level set critical level set upper level set

band sum

FIG. 9

3.2.1. LEMMA. Either S meets every non-critical fibre only in arcs or S meets every non-
critical fibre only in simple closed curves.

Proof. Since S is connected it suffices to show that the upper and lower level sets of
each critical point consist entirely of arcs or entirely of simple closed curves. By
symmetry we need consider only the lower level sets.

Suppose that the lower level set of the critical point x consists of an arc and a simple
closed curve. There are two cases depending on whether the closed curve is essential.
If the curve is essential then, since the fibre split along the arc is an annulus, the
isotopy class of the curve is determined. The upper and lower level sets of x must
appear as in Fig. 10. In particular, the upper level set of x is a boundary-parallel arc,
which contradicts Lemma 3.1.1.

lower level set critical level set

FIG. 10

upper level set
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If the simple closed curve component of the lower level set of x bounds a disk in the
fibre p~ l{t) then the level sets of x appear as in Fig. 11.

Since S is incompressible, the curve component of Sr\p~\t — e), for small s > 0,
must bound a disk on S. This disk must contain at least one index 0 critical point.
However, there is an isotopy that cancels x and the index 0 critical points in the disk
without introducing new critical points. This contradicts the minimality of the
number of index 0 or 2 critical points on S. A careful construction of this isotopy can
be made by using the observation that a level-preserving isotopy cannot introduce
new critical points.

lower level set critical level set upper level set

FIG. 11

As a corollary of this lemma we see that if the intersection of S with any fibre
contains an arc then there are no index 0 or 2 critical points. This will happen, except
when each boundary component of S is contained in a fibre.

With patience one may catalogue all of the possibilities for the upper and lower
level sets of an index 1 critical point on S. Because the level sets of S consist either
entirely of simple closed curves or entirely of essential arcs, there are twelve
possibilities for the lower level set of x. These depend on whether it has one or two
components and whether these components are contractible closed curves, boundary-
parallel closed curves, essential closed curves, or essential arcs. Also, if there are two
arc components, either these will be parallel or their complement will be a disk. For
each of the possible lower level sets one constructs the possible upper level sets by
taking band sums and eliminating those that contain boundary-parallel arcs or have
both simple closed curves and arc components. Finally, one eliminates the case when
the lower level set consists of one arc and the upper level set is obtained by a band sum
joining opposite sides of the arc. (See Fig. 12.) This case cannot occur because the surface
S is orientable.

We invite the reader to construct this catalogue. Having done so it will be easy to
verify the following two facts.
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lower level set upper level set

FIG. 12

3.2.2. If both the upper and lower level sets of X contain an essential closed curve,
then these curves are isotopic.

The interesting case is shown in Fig. 13.

I l l

lower level set critical level set

FIG. 13

upper level set

3.2.3. If the lower level set contains two arcs then
(i) they are parallel, and

(ii) the upper level set is obtained by a band sum across the annulus component of their
complement (see Fig. 14).

lower level set upper level set

FIG. 14
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3.3. Isotopy classes of essential surfaces
3.3.1. THEOREM. An essential surface in a once-punctured torus bundle over Sl is

isotopic either to the fibre or to a surface having the same type as one of those given in
§§2.2, 2.3, 2.4, or 2.5.

Proof. We move S by an isotopy so that S is in general position. By Lemma 3.2.1
either S meets every non-critical fibre only in arcs or S meets every non-critical fibre
only in simple closed curves. We consider these two cases separately.

Case 1: S meets every non-critical fibre only in simple closed curves. Suppose that,
for some non-critical fibre F, none of the simple closed curve components of S n F is
essential in F (a simple closed curve is essential in a surface if it is not contractible and
not parallel into the boundary). We can assume, possibly after an isotopy of S (we do
not need to keep general position here, even though it could be maintained), not only
that each component of S n F is a simple closed curve that is not essential but that,
within the isotopy class of S, the number of such curves is minimal. It follows that
either S n F = 0 or each component of S n F is parallel into dF.

Now, split M at F to obtain a product T x / (T is a once-punctured torus). Let S' be
the result of splitting S at S n F . The surface S' is incompressible in Txl. Each
component of dS' is contained in dTx I, Tx {0}, or Tx {1} and in the latter two cases
such components of 55' are parallel into dT. It follows from [2, §8, Appendix] that a
component of S' is either an annulus or a once-punctured torus. Now, by considering
the placement of the boundary of such an annulus or once-punctured torus, we see
that the above minimality condition for the number of components of S n F leaves
precisely two possibilities. Either SnF has one component and S' is an annulus
parallel into dTx I or Sn F = 0 and S' is parallel in Tx I to T x {0}. Hence, 5 is
either a torus and is parallel into dM (S is not essential) or S is parallel to a fibre.

So, suppose that every non-critical fibre F contains an essential simple closed curve
component of S n F. In this situation observe that for F a non-critical fibre, the
components of 5 n F consist of one (non-empty) family of parallel, essential simple
closed curves, a (possibly empty) family of simple closed curves each parallel into dF,
and a (possibly empty) family of simple closed curves each contractible in F. We shall
show that in a critical fibre the essential closed curves of the upper level set are
isotopic in the fibre to those of the lower level set.

Let x be a critical point with p(x) = t and let X be the critical neighbourhood of x.
Suppose that, for small e > 0, S n p~ l{t — e) contains an essential closed curve s that is
not contained in X. Then the component of S n p~l{[t — e, t + e\) containing s has no
critical points and hence is an annulus. Therefore S meets the fibre p ~ l(t + e) in a curve
isotopic to s. By symmetry we may therefore assume that all essential curves of
p~l(t — e)n S and p~l(t + £)r\S are contained in X. Now, it follows from observation
3.2.2 that the essential curves in the two fibres are isotopic.

By our assumption that every non-critical fibre F contains an essential simple
closed curve component of S n F, we have established our claim that, in a critical
fibre, the essential closed curves in the upper level set are isotopic to those in the lower
level set. So, in particular, we know that the characteristic class of M fixes the isotopy
class of an essential curve, and hence has trace ±2.

Let F be a non-critical fibre; we can assume, possibly after an isotopy of the
essential simple closed curves of S at a non-critical fibre, that SnF does not contain
any contractible simple closed curves and that relative to all the preceding conditions
SnF has a minimal number of components.
5388.3.45 Z
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We split the manifold M at F to obtain a product T x / , where T is a once-
punctured torus. Let S' be the result of splitting S at S n F. Now, there is an annulus
R c Tx / with PR having one component in Tx {0} and one component in Tx (1},
each an essential simple closed curve parallel to the components of PS' corresponding
to the family of essential simple closed curves in SnF. Furthermore,
RnS' <= R — PR. We may assume that, among all such annuli, the number of
components of R n S' is a minimum. In particular, it follows that either R n S' = 0 or
each component of R n S' is a non-contractible simple closed curve.

Split T x / at R to obtain T x /, where T is a disk with two holes. Let S" be S' split
at R n S'. Each component of 5" is incompressible in T x /; and each component of
S" is contained in PT x /, T'x {0}, or T 'x{ l} . Again, from [2, §8, Appendix] we
have that a component of S" is either an annulus or a disk with two holes. We again
consider the placement of the boundary of such an annulus or disk with two holes.
Using the minimality conditions on the number of components of S n F and the
number of components of S' n R, we can describe completely the placement of the
components of S". We omit this analysis, but show the only possibilities for the
components of S" in Fig. 15.

(a) T'xl (b) T'xl

S"-

(c) T'xl (d) T'xl

FIG. 15

We conclude that S either has the type of one of the tori, Im(£) or (Im(£))~, of § 2.3
or 5 has the type of one of the surfaces S(p, q, n) of § 2.4. This completes Case 1.

Case 2: S meets every non-critical fibre only in essential arcs. Notice that a once-
punctured torus Thas the property that the maximum number of pairwise disjoint,
non-parallel essential arcs in Tis three.

If a non-critical fibre F contains three essential level arcs, no two of which are
parallel, it is easy to check that there are no critical levels.

Split M at a non-critical fibre F to obtain the product Tx / and let S' be S split at
F r\S. Then each component of S' is a vertical disk in T x / meeting each level in three
distinct families of parallel, essential arcs. By connectivity (and orientability) con-
siderations, either S has six vertical disks in T x / and S is an annulus of type
(Im(D3)) , coming from a bundle with characteristic class [Q], or S' has three vertical
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disks in T x / and S is an annulus of type Im(D3), coming from a bundle with
characteristic class [@2].

We can now assume that S meets each non-critical fibre in at most two parallel
families of arcs.

Next we need an observation that uses the incompressibility of S. Suppose that F is
a non-critical fibre that meets S in two parallel families of arcs. Let x be the critical
point immediately below F and y the critical point immediately above. Let X and Y
be the respective critical neighbourhoods of x and y. Recall that the upper and lower
level sets of a critical point each consist of two parallel arcs, and that the upper level
set is obtained by a band sum across the annulus component of the complement of the
lower level set. This means that X and Ymeet F in arcs that are 'outermost' in their
parallel family (i.e. the parallel family is contained in the disk component of the
complement of these arcs). We observe that the arcs X n F are not in the same parallel
family as Yn F. That is to say that the sequence of level sets shown in Fig. 16 cannot
occur.

FIG. 16

To see this, notice that, since X n F and Yn F are outermost, if they were contained
in the same family then they would be equal. Thus X u Y would be an annulus
contained in S that is contained in a 3-cell in M. This is impossible since S is
incompressible. (The compression that would result is analogous to that shown in Fig.
8.)

Now we claim that either S meets some fibre in a single parallel family of arcs, or S
is a surface of the same type as the annulus (Im(D2)) .

For the proof of this claim suppose that S meets every non-critical fibre in two
parallel families of arcs. One of these families is distinguished in each fibre by the fact
that its outermost arcs are contained in the critical neighbourhood of the critical point
immediately above the fibre. Let A' be a critical point with p(x) = t. The preceding
observation shows that for small £ > 0, the distinguished family of arcs in p~x{t + £)
contains two fewer arcs than the distinguished family in p~l(t — e). This implies that
there are no critical points in S, for otherwise it would follow by induction that the
distinguished family of arcs in F contains fewer arcs than itself. An easy combinatorial
argument now shows that, since S is connected, there are exactly two arcs in each
parallel family in S n F. Therefore S is of the same type as (Im(D2))~.

Finally, suppose that S meets the fibre F in one family of parallel arcs. If S contains
no critical points, then another easy combinatorial argument shows that there are at
most two arcs in the family. It follows that the characteristic class of M has trace 2 and
hence that S has the type of (Im(D,)) in Tx I/^i, or of (Im(Dj)) in T x //,p2Oan, or of
Im(D,) in Txl/a,,.

If S does contain a critical point, we consider the product M' obtained by splitting
M along F. Let S' a M' be S split along S n F. The earlier observation then implies,
by another combinatorial argument, that each component of S' meets each non-
critical fibre in exactly two arcs. Therefore, in order for S to be connected, there must
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be either 2 or 4 arcs in S n F . It follows that S is of type C(J; n(k),...,n(\)) where J is
odd if S n F has four components, and even otherwise. Note that S contains k critical
points if J is even, and 2k if J is odd.

4. Isotopy

A given once-punctured torus bundle may contain several of the essential surfaces
of the types that we have described. We now determine which of these are in the same
isotopy class.

If M is a fibre bundle, an isotopy of M which is a bundle equivalence at each time
will be called a bundle isotopy.

4.1. Isotopies for surfaces of type C(J; n(k),..., n( 1))
4.1.1. PROPOSITION. Let M be a once-punctured torus bundle containing surfaces S

and S' of types C{J ;n{k),...,n(\)) and C(J; m(/c),...,m(l)), respectively. If the k-tuple
(m(k),...,m(\)) is obtained from (n(k),...,n(\)) by a cyclic permutation, then there is a
bundle equivalence h: M -*• M so that S is isotopic to h(S').

Proof. The surface S' can be moved by a bundle isotopy so that both S and S'
are divided into twisted saddles by the fibres F0,...,Fk_i and so that for any
i G {0,..., k— 1} each surface twists the same number of times in the block between F,
and F,- + 1(modk). Thus we can assume that m(i) = n(i), for / = l,...,/c.

The isotopy classes in F, of the arcs S n F, and S' n F, are completely determined by
the respective isotopy classes of S n Fo and S' n Fo. While S n Fo may not be isotopic
to S'nF0, there is a homeomorphism n: Fo -* Fo with n(S' n Fo) = S n Fo. Let
H e SL2(Z) be the isotopy class of n. Then it follows from the definition of n that H
commutes with PJ... S"(2)/4"(1). Therefore n can be extended to a bundle equivalence
h: M -* M. Both S and h(S') are divided into twisted saddles by Fo, . . . , Fk_ j and they
meet each F, in isotopic families of arcs. Thus S is isotopic to h(S') by a bundle isotopy
of M.

4.1.2. REMARK. Suppose that X and Yare commuting elements in a free product
with amalgamation in which the amalgamating subgroup is central in each factor.
Then X and Yare both contained in a cyclic subgroup, or X and Yare both contained
in a factor, or one of X or Yis contained in the amalgamating subgroup.

In the notation of the proof of Proposition 4.1.1, this implies that either H = P2 or
H and PJ... B"{2)A"{1) are contained in a cyclic subgroup. Thus, under the hypotheses
of Proposition 4.1.1, if the characteristic class of the bundle M is not a proper power,
then S is isotopic to S'.

In general, if M has characteristic class [Gs], where G is not a proper power, then
there are at most s— 1 bundle equivalences mapping S to a surface that is not isotopic
to S. These bundle equivalences are extensions of homeomorphisms of the fibre in the
isotopy classes G, G2,..., Gs~l.

4.1.3. PROPOSITION. Let M be a once-punctured torus bundle containing surfaces S and
S' of types C{J;n{k),...,n(\)) and C{J'; m{k'), ...,m(l)), respectively. If S and S' are
isotopic, then there is a bundle isotopy taking S to S'. Moreover, k = k', J = J', and
(m{k),...,m(\)) is a cyclic permutation of{n(k),...,n(\)).
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Proof. Since S and S' are homeomorphic surfaces, an euler characteristic com-
putation shows that k must equal k'. Once we have shown that S and S' are bundle
isotopic it is immediate that (m(k),...,m{\)) is a cyclic permutation of (/i(/c), ...,n(l)). It
also follows that J = J', since P2X is not conjugate to X in SL2(Z). Thus we need
show only that S and S' are bundle isotopic.

If P e {1, — 1} then S and S' are boundaries of regular neighbourhoods of non-
orientable surfaces. It suffices to show that these non-orientable surfaces are bundle
isotopic. Thus we will assume in this case that S and S' have been replaced by the
corresponding non-orientable surfaces.

Let Fo , . . . , Ffc_! be fibres that divide S into twisted saddles and let,/, be an isotopy
of M with ,/0 = id and / , (S) = 5'. Standard arguments show that we can assume that
./, has the following properties:

(1) ,/,(dS) = dS for all f e [0, 1];
(2) the projection M -+ S1 restricts to a morse function on ,/,(S) for all t e [0,1].

(The morse function may not always have distinct critical values.)
A critical point of ,/,{S) will be called significant if its upper and lower level sets

consist of arcs. Since, by (1) above, ./,(S) meets each non-critical fibre in exactly two
arcs, there can never be two significant critical points in the same fibre. Therefore
there is a bundle isotopy ,/, such that the fibres f,{F0),...,f,{Fk-{) separate the
significant critical points of ./,(S) for all t e [0, 1]. It follows that the arcs of
,/,{S) n /,{Fi) are isotopic in f,(Fj) to /t(S n F,) for all t. Therefore the fibres
,/,(F0), . . . ,/ r ,(Fk_1) divide both 5' and fx(S) into twisted saddles, and they meet the
two surfaces in isotopic pairs of arcs. This implies that S' and ,/,(£) are bundle
isotopic, so S' and S are bundle isotopic.

4.2. Isotopies for surfaces of type S(p, q, n)
4.2.1. PROPOSITION. Let M be the once-punctured torus bundle with characteristic

class [/!"], and let S and S' be surfaces of type S(p, q, n) and S(p', q', n) respectively. Then
S is isotopic to S' if and only if p — p' and q — q'.

Proof. It is clear that S and S' are isotopic if p = p' and q = q'. To prove the
converse it is helpful to view M a little differently. Identify M with the bundle Tx //a>1;
and let M be the quotient of M obtained by identifying the boundary of each fibre to a
point. Thus M is a torus bundle over Sl. We can also give M the structure of an S1-
bundle over a torus Z. The S^fibres will be circles contained in torus fibres and
parallel to the image of the closed curve a x {t}. The image in M of dM and the curve
b x {0} are closed curves in M which project, respectively, to simple closed curves x
and y in Z. These two curves define a framing of Z. The surfaces Im(S) and Im(S') are
both saturated in the S'-fibration of M, and project to simple closed curves
homologous to p[.Y] + q[.y] and p ' M + g'Ly], respectively. If S and S' are isotopic in
M, then their images are isotopic in M, and their projections are homotopic in Z.
Therefore p — p' and q = q'.

5. Classification

We shall exploit the structure of SL2(Z) as the free product with amalgamation,
Z 4 * Z 2 Z 6 , given in § 1.2. Recall that, with this structure, SL2(Z) has the presentation

SL2(Z) = | P, Q: P4 = Q6 = 1, P2 = Q31,
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where

'-C".') - « - ( - ' , {
5.1. Classification of bundles

In Proposition 1.3.1, we proved that if M and N are once-punctured torus bundles
with characteristic classes [G] and [//], respectively, then M is equivalent to N if and
only if [G] = [//]. Now, by using the above structure of SL2(Z) and the normal form
theorem for free products with amalgamation, we have that each element g of SL2(Z)
can be written uniquely as

g = PrXlX2...Xs,

where the A^ (1 ^ j ; ^ s) are chosen alternately from the two sets {P} and {Q, Q2} and
r e {0,2}. Furthermore, since P2 is in the centre, the element g e SL2(Z) is conjugate
to an element whose normal form

FY....Y,

has the additional property that Yi and Yt are not both contained in the same one of
the two sets {P} and {Q, Q2}. The normal form of this latter element is obtained by
cyclically reducing the normal form for g' and it is unique up to a cyclic permutation
of yls..., Yt. We will call such a normal form the cyclically reduced normal form for g.
We will call l(g) = t the length of g. Observe that if l(g) = 0, then g = / or g = P2\ if
l{g) = 1, then g is conjugate to one o{ P±i,Q±i,Q±2\ otherwise, l{g) is even.

We can use cyclically reduced normal forms to classify once-punctured torus
bundles over Sl. Namely, except for bundles with characteristic class [/], [P2] , [P*'],
[(?*J], and [Q ± 2 ] , once-punctured torus bundles over Sl are classified by equivalence
classes of words PrQElPQ£2P...QesP, where r = 0 or 1, e, = 1 or 2 (1 < i < s) and two
w o r d s PrQeiP...QCsP a n d Pr'Qd'P...Qd!iP a re equiva len t if r' = r, s' = s, a n d ((5,, ...,8S)
is a cyclic permutation of (£l5..., £s). Later, in Examples 6.3, it will be convenient to use
simply the notation [fii,...,£s] to denote the bundle with characteristic class
lQeiP...QesP'\. These correspond to characteristic classes with positive trace whereas
the class [P2QCiP...QEsP] has negative trace.

5.2. Classification of essential surfaces
If M is a once-punctured torus bundle with characteristic class [//], then for each

element of SL2(Z) that is conjugate to H and has the form

PJAn{k)...Bn{2)An{l\ whe re J e {1, - 1 } a n d \n{i)\ ^ 2 ,

or

pJBn(k) Bn(i)An(i)^ w h e r e j e ^ 2 } and | n(i) | ^ 2,

we can construct an essential surface in M of type C(J; n(k),...,n(l)).
Furthermore, by Remark 4.1.2 there are only a finite number of isotopy classes of

such surfaces determined by the number J together with the /c-tuple (n(l),...,/i(fc)),
modulo cyclic permutations. Conversely, by Theorem 3.3.1, an essential surface in the
bundle, M (except for the fibre, certain annuli and tori, which appear in bundles
whose characteristic class has trace of absolute value not greater than 2, and the
surfaces of type S(p, q; n), which appear in bundles whose characteristic class has trace
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2), determines an element of SL2(Z) which has one of the above forms and is conjugate
to H. The number J together with the /c-tuple (n(l),...,n(/c)), modulo cyclic
permutations, are invariants of the isotopy class of the essential surface. A special form
for an element of SL2(Z) is defined to be one of the two forms listed above.

The fact that there are only a finite number of types of essential twisted surfaces in a
given bundle M is a corollary of the following proposition.

5.3. PROPOSITION. The elements of a conjugacy class in SL2(Z) can be represented by
only a finite number of special forms.

Proof The proof will follow from an estimate of the length of a word in special form.
In particular, we will show that

l{PJCn(k)...Bn(2)An(l)) ^ 2 X I n(i)|-2/c,
;= I

where C = A if k is odd and C = B if k is even. Since | n(i)\ ^ 2, it follows immediately
from this estimate that the elements of a conjugacy class can be represented by only a
finite number of special forms.

The estimate is made by analysing the (syllable) cancellation that takes place
between A" and Bm, where n,m e Z. The elements A = QP, B = PQ, A~l = PQ2,
B~l = Q2P are cyclically reduced, so the cancellation must take place between a
power of A and a power of B. Since \n\, \m\ ^ 2 , this cancellation never involves
more than half of the syllables of A" or Bm. The situation in which the maximal
number of syllables are cancelled is when a power of B (or A) appears between powers
of A (or B) with the same sign; that is, if /, m, n, > 0, then

...A'BmAn... = ...QP...QPPQ...PQQP...

= P2...QP...Q2...PQ2P...

and

A~lB~mA~" = ...PQ2...PQ2Q2P...Q2PPQ2...PQ2...

= P2...PQ2...PQP...Q...PQ2....

In either case four syllables are cancelled. In a word of the form PJA"{k)...B"{2)An{i),
where J e {1, — 1}, the PJ may be cancelled. In this situation the maximal number of
syllables are cancelled when n(\) and n(k) have the same sign; that is, if m > 0 and
n > 0, then

...AmPJAn... = ...QPPJQ... = PJ+lQ2

and

...A'mPJA~" = ...Q2PJPQ2... = PJ'...Q...,

where J' — 2 if J = — 1, and J' — 0 if J = 1. In either case three syllables are cancelled.
So, in a word of the form PJBn(k)...An(X\ with Je {0,2}, which has syllable

length of 2£*|n(/) | , there are at most 2/c syllables cancelled. In a word of
the form PJA"{k)...Bn{2)A"(l), with J e { l , - 1 } , which has a syllable length of

| n(i) | + 1, there are at most 2/c+ 1 syllables cancelled.
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In the next section we use these results to list the essential surfaces in certain
specified bundles.

6. Computations

Given a once-punctured torus bundle over S1, say M, our methods enable us to
find all essential surfaces in M. We are also able to put a framing (coordinate system)
on dM and describe the boundary curves of all the essential surfaces in terms of this
one framing. Using this latter information, we can draw some conclusions about the
closed manifolds obtained by attaching a solid torus to dM; namely, we can describe
all such attachments which give either reducible or Haken manifolds (see Remark
2.5.2).

6.1. An algorithm
Given a once-punctured torus bundle over S1 (here the word 'given' can be

interpreted simply as meaning that we are given a representative of a conjugacy class
in SL2(Z)) we shall write down the steps of a procedure for listing all essential surfaces
of type C(J; n(k),...,n(\)) in the given bundle.

Suppose H e SL2(Z).
Step 1. Write H as a word in the syllables P, Q, and Q2. (There are many ways to do

this; e.g. by using row and column operations, first write H as a product of powers of
A, B, and P. Then use the relations A = QP, B = PQ, A~x = PQ2, B~l = Q2P.)

Step 2. Write out the cyclically reduced normal form for H. Obtain /(//). If
/(//) < 2, then stop; there are no essential surfaces of type C(J; n(k), ..., n(\)) in the
given bundle. If l(H)^2, proceed.

Step 3. From the formula

l{PJCn(k)...Bn{2)An(l)) ^ 21 £ | n(/)| - 1 )> 2k,

where C = A if k is odd and C = B if k is even, write all special forms that coukl
possibly represent elements of SL2(Z) with length /(//).

(For example, suppose that /(//) = 6. Then the possibilities for special forms that
represent elements of SL2(Z) having length 6 are: k = 1 and |n(l) | ^ 4 ; k = 2 and
|n(l) | = 3, |n(2)| = 2, or |n(l)| = |n(2)| =2 ; k = 3 and |n(l)| = |n(2)| = |n(3)| = 2.
Of course, for l(H) large there are many possibilities; and, even in the above case, the
many sign combinations must be considered. However, there are techniques that
systematically eliminate many of the possibilities. Say in the above case that we were
to consider k = 2 and |n(l) | = |n(2)| = 2. Then the syllable length of pJBni2)An{l\
with J = 0 or 2, is 8. However, in arriving at the cyclically reduced normal form for
p-/B"(2)/4"(1) there are precisely four cancellations when n(\) and n(2) have the same
sign and no cancellations when n(l) and n(2) have opposite signs. Hence, for k = 2 and
|n(l) | = |n(2)| = 2, l(PJBn{2)A"{l)) is either 4 or 8, respectively; and so, no com-
bination of n(\) = ±2 and n(2) = ±2 leads to a length 6 element.)

Step 4. From the special forms obtained in Step 3 list those that represent elements
conjugate to H.

(This step uses a solution of the conjugacy problem in SL2(Z). The easiest way to do
this is to write the cyclically reduced normal form for the particular special form in
question and compare it to the cyclically reduced normal form for H, obtained in Step
2.)
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There is an essential surface of type C(J,n{k),...,n(l)) in the given manifold if
and only if the special form PJC"{k)...B"{2)A"(i\ modulo cyclic permutation of
(n(/c),...,n(l)), appears in the list obtained in Step 4.

6.1.1. EXAMPLE. We carry out the algorithm in a specific case. We suppose

H = ( I e SL2(Z). (This example corresponds to finding the essential surfaces

of type C(J; n(k),...,n(\)) in the knot space of the 'figure-eight' knot.)

Step 1.

H \\ oy \o \j\\
Step 2. The cyclically reduced normal form for H is QPQ2P. Hence, /(//) = 4.
Step 3. From the formula

4 = l(PJCn{k)...Bn{2)An{l)) > 2(t(\n(i)\-\)) > 2k,

we have k ^ 2; and the possible special forms that represent elements of SL2(Z) with
length 4 are: k = 1 and |n(l) | ^ 3; k = 2 and |n(l) | = | n(2) ( = 2. For fc = 1 and
|n(l) | ^ 3, the syllable length of PJAn(1), where J = 1 or 3, is 21 n(l)| -I-1; and precisely
three cancellations occur in arriving at the cyclically reduced normal form for PJAn{X).
So, the only possibility is for | n{\)\ = 3. We have PA3, PA~\ P~XA\ P~lA~\ For
k = 2 and |w(l)| = |n(2)| = 2, the syllable length of pJBn(2)An(X\ where J = 0,2, is
2( | n(2) | +1 n(l) |) = 8. As we observed earlier, to obtain the cyclically reduced normal
form for pJB"{2)A"(l) we make precisely four cancellations if n(\) and n(2) have the
same sign and no cancellations otherwise. So, the only possibility is for n{\) and n(2) to
have the same sign, |n(l)| = |n(2)| = 2. We have

B2A2, B'2A~2, P2B2A2, P2B~2A - 2

Step 4. The special form PA'3 = PPQ2PQ2PQ2 cyclically reduces to QPQ2P; and
P~lA3 = P~XQPQPQP cyclically reduces to Q2PQP. Both of these are conjugate to
H. These are the only special forms listed in Step 3 that represent elements of SL2(Z)
conjugate to H.

We conclude that the only essential (orientable) surfaces in the 'figure-eight' knot
space (other than the fibre) are of type C(\; —3) and C(— 1; 3). Both are genus 1 with
two holes.

6.2. Framing
If M is a once-punctured torus bundle over S1, then we want to select a framing

(coordinate system or pair of transverse simple closed curves) for dM; and in this
framing describe the boundary curves of all essential surfaces in M.

First, note that there is a unique (up to isotopy) simple closed curve in dM that is
the boundary of an orientable surface. This curve is the boundary of the fibre in a
fibration of M as a once-punctured torus bundle over S1 and is analogous to the
'longitude' in the classical knot manifold in S3. This curve will be one of the curves of
our framing for dM.

We fix a base point x in 8T and let a, b be elements of n^T, x), analogous to a and b
of Fig. 1, oriented so that dT is the word [a, b~\. The group nx{T, x) is freely generated
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by a and b. Let Stab([«, b~\) be the subgroup of the group of automorphisms of nx{T, x)
that stabilizes [a, b~\. Now, for y e Stab([a, b~\) there is a unique (up to isotopy fixing .v)
homeomorphism g: (T,x) -> (T,x) such that g^ = y. Furthermore, and here is the
point, if M = Tx I/g, then there exists a unique simple closed curve t)t in dM such that
ty is transverse to the fibre in M and t.,aty~~' = y(a) and tMy~' = y{b). The curve t.r
along with the boundary of the fibre, gives a framing for dM. This framing is
completely determined by the automorphism y e Stab([«, 6]). We call the elements of
Stab([«, 6]) framings for once-punctured, torus bundles, and we call a particular
automorphism y e Stab([«,b]), a framing for the bundle M = TxI/g, where
g : (T, x) -> (T, x) is a homeomorphism and g^ = y. If / maps (T, x) to (T, x) and / is
isotopic to g, then M' = Tx / / / i s a bundle equivalent to M = Tx I/g. The framings
>' = Q* and n =f# differ by a conjugation by [a, by; and indeed, they explains how
ty differs from tn by 'twisting' around the boundary of the fibre. It is this observation that
allows us to describe the boundaries of all essential surfaces in M in terms of a fixed
framing.

Let AreSL2(Z). There is a natural map (using the basis a, b selected above) from
Stab([fl, b]) onto SL2(Z). An element t; 6 Stab([a, b~\) such that c is mapped to X is
called a framing for X (X does uniquely determine a once-punctured torus bundle and
we have selected a framing for it). If Z e SL2(Z) and Z is conjugate to A', say
X = VZU'1, then the bundle determined by Z, Mz, is equivalent to the bundle
determined by X,MX; in fact, there is a homeomorphism h: (T,x) -> (T,x) such
that hxld: Tx I -* Tx I extends to a bundle equivalence from M7 to Mx, where
h* -» C/. If c is a framing for X (a framing for dMx) and (is a framing for Z (a framing
for dM7), then <i;~ V O ' 1 is a conjugation by [a,b~y, where n is any framing for U.
The integer) is independent of f.i. We call) the transition index between £ and (•

Now, suppose that Mx is a once-punctured torus bundle over S1, where X is a
representative of the characteristic class of M. Let ^ be a framing for X. Suppose that
Z = P'Cll(')...ffl(2)i4"(1) is a special form representing the element Z e SL2(Z). By
using the construction of §2.2, we can select a framing, £, for Z and describe the
boundary of the surface of type C(J; n(/c),...,n(l)) in M2 in terms of this framing. On
the other hand, if Z is conjugate to X, then Mz is bundle equivalent to M and the
bundle M contains an essential surface of type C{J; n(k),..., n(l)). We wish to describe
the boundary of this surface of type C(J; n(k),..., n(\)) in M in terms of the framing ^

a:)for X. If/ is the transition index between ^ and (, then the matrix I 1 defined in

terms of the ordered basis {t?, A} for Mz and {t$, k) for M, where A is the boundary of
the fibre, describes the change in coordinates between the framing for dMz and the
framing for dM.

We shall slightly abuse notation and use a, /?, (p, and \j/ for automorphisms in
Stab([a, b~]) representing the homeomorphisms a, /?, q>, and i/f, respectively, defined in
§ 1.2. The following framings are selected as standard framings:

a: < _. is standard for A =
[b -> ba J

/?: < is standard for B =
[o —> 6

is standard for P =

1
0

1
1

0
1

—
1

o\
l)

—

0

) •

•
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and

* : l 6 - f c , 6 - 1S Standard f°r e = U l 0.

If PJ...B"{2)A'«l) is a special form for an element X of SL2(Z), then the standard
framing for X corresponding to the special form

nn(k) DII(2)AII(\) • on{k) o » ( 2 ) H ( 1 )

for PA'Hk)...B"i2)A"il) it is </>a"(k).../?"(2)a"(1),

for P2B"ik)...B"l2)A"ll) it is (p2f}n{k)...pn{2)ot.n(1),

a n d f o r P lA"{k)...B"(2)A"([) it i s (p l a " ( k ) . . . / i " ( 2 ) a " ( 1 ) .

We have selected these framings so that the boundary curves of the essential surface of
type C(J; n(k),..., n( 1)) all cross the framing curve transverse to the fibre at most once.

Table 1 describes the special forms, the standard framings corresponding to the
special forms, the essential surface having the type of the form, and the coordinates of
the boundary of the surface described in the standard framing.

TABLE 1

Form

any
P
P2

p- i

Q
Q2

A"
P2A"
BMk>...B"i2)Antl>

P2BHk)...B"{2)An{U

PA"{k)...B"{2'A"lu

P~lA"tk>...B"i2>A"iU

Framing

any

</>2

< / > " '
tp
(j/1

a"
<p2a"
/f(k).../r(2la"lu

(/j2/r(kl.../r(2la"(!l

<pa"(<".../y"(2|a"(l>

Surface

fibre
(Im(D3))~, annulus
(Im(D,))~ (Im(D2))~, annulus
(lm(D3)) , annulus
(Im(D4))~, annulus
Im(D4), annulus
Im(D,), annulus
(lm(D,)) , annulus
C(0;H(A) H(I))

genus \k— 1 with 4-holes
C(2; H(A:), ...,«(1))

genus \k with 2-holes
C(l ;n(k) «(1))

genus k with 2-holes
C(-l;n(fc) n(l))

genus fc with 2-holes

Boundary
curves

<o, i>
<4, l>

<2, l>
<4, — 1 >
<6, —1>

<3, — l>
<i ,o>
<2, l>
<K0>

<2, 1>

<4J>

<4, — 1>

6.2.1. EXAMPLE. Continuing with Example 6.1.1, the figure-eight knot space, we
shall select a framing and describe the boundary curves of the essential surfaces of type
C(l; - 3 ) and C ( - l ; 3 ) .

Choose the standard framing for PA~3, that is (pa~3. In this framing the boundary
of the surface of type C(l; —3) has coordinates <4, 1>.

In the framing^" 'a3, the boundary of the surface of type C(— 1; 3) has coordinates
<4, —1>. We need to compute the transition index between <pa~3 and q>~la3.

Set X = PA~3 = PPQ2PQ2PQ2 and set Z = P3A3 = P3QPQPQP. Then for
U = Q2PQP, we have X = UZU~l. Let p~ l<x be a framing for V. We find that (pa"3
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and (/?" 1a)(/>~^(Z?"i<x)~l both take a to aba'1. Hence, the transition index is zero;

and the matrix I I takes the <4, —1> curve to the <4, —1> curve. We conclude

that for the 'figure-eight' knot space the three essential (orientable) surfaces (the fibre,
the surface of type C(l; —3), and the surface of type C(3; 3)) have boundary curves
with coordinates <0,1>, <4,1>, and <4, —1>, respectively, in the framing (pa.~3.

Notice that the framing <pa~3 is the standard framing for the 'figure-eight' knot
space coming from a 'meridian' and 'longitude' pair. In this example the transition
index between standard framings coming from special forms was zero. However, for
any n, there is an example of a once-punctured torus bundle having a transition index
larger than n between standard framings coming from special forms.

6.3. Table of examples
Table 2 lists all essential surfaces in once-punctured torus bundles with character-

istic class of length at most 12 (and positive trace). We also select a framing for each
bundle and give the coordinates of the boundary curves of the essential surfaces in
terms of this framing.

Before giving the table, we will explain the notation.
The first column gives the bundle by giving a representative of its characteristic

class. The representative chosen is a cyclically reduced normal form, and for classes
having length not greater than 2, we use the short notation from §5.1; i.e. the
characteristic class [QE>P...QesP] is given by [6i,.. . ,es]. So, the characteristic class
listed as [1,2,1,2] represents the class [QPQ2PQPQ2Pl

The second column gives the trace of the class.
The third column gives a framing. It is in terms of this framing that everything is

referenced. In most cases the framing was chosen as a standard framing coming from a
special form representing a surface of type C(J; n{k),..., n{\)) in the bundle. However,
this is not always the case. In particular, the bundles with characteristic classes [1 ,2] ,
[1,2, 1,2], [1,2, 1,2,1,2], and [1,2,1,2,1,2,1, 2] corresponding to the 'figure-eight'
knot space and its 2-sheeted, 3-sheeted, and 4-sheeted cyclic coverings, respectively,
are given the framings that are 'lifts' of the framing for the 'figure-eight' knot space.

The fourth column lists the types of essential surfaces (except for the fibre), the
coordinates of their boundary curves (in terms of the specified framing), and the
topological type of the essential surface. For example, the bundle with characteristic
class [1,2,2,2] has an essential surface of type C(l;2,2, 3) with boundary curves
having coordinates <4, — 3> in the framing <pa~5; and it is a genus 3 surface with two
boundary components.

The fifth column is titled 'surgeries' and it is divided into two columns. This is
explained as follows. If M is a once-punctured torus bundle with characteristic class
[//], then M determines a unique torus bundle over S1, M, by attaching a solid torus
to dM, sewing a curve in the boundary of the solid torus that is the boundary of an
essential disk inside the solid torus onto a curve in the boundary of M that is the
boundary of the fibre. The operation of attaching a solid torus to dM, sewing the
boundary of an essential disk in the solid torus onto a <p, g>-curve in the given
framing, is a <p, g>-surgery on a section of M. Our methods describe precisely which
of these closed manifolds are not irreducible and which are Haken. We list in the
column titled 'reducible' the pairs <p, q} for which, in terms of the given framing, a
<p, </>-surgery gives a manifold that is not irreducible. We also list the topological
type of such a manifold. For example, if M is the bundle with characteristic class [P2],
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then a <2, l>-surgery in the framing (p2 gives the connected sum UP3 # UP3 # UP3,
which is not irreducible. The other column is titled 'Haken'. It gives the pairs <p, q)
for which, in terms of the given framing, a <p, g>-surgery gives a Haken manifold. Of
course, except in the case that the characteristic class has trace in absolute value not
greater than 2, we only obtain Haken manifolds by doing surgery along a <p, <?>-curve
that is also part of the boundary of an essential surface in M.

The sixth column is titled 'Remarks'. These remarks, for the most part, relate the
example back to a more familiar setting (e.g., the 'figure-eight' knot space), or
comment about the particular essential surfaces, or comment about a consequence of
some particular <p, g>-surgery.

7. Open Problems

There are some interesting questions that we have left unanswered.
We had hoped to classify the manifolds obtained by surgery on a section of a torus

bundle. We did not do this. One of the problems is that a manifold obtained by
surgery on a section of a torus bundle does not uniquely determine the bundle. Since
the number of conjugacy classes of 2 x 2 matrices with a given trace is finite,
homological considerations show that the number of bundles involved is finite (J.
Birman has informed us that she can prove that if a manifold has a genus 1 open-book
decomposition then, in 'most' cases, the associated bundle is unique and, in general,
there are at most two distinct bundles involved). The 3-sphere has two such bundles
(coming from the 'figure-eight' and the trefoil). We gave examples showing that there
are two such bundles for real projective 3-space (see Remarks (a) and (h) in Table 2).
However, it still seems to be unknown whether homeomorphic manifolds can be
obtained by distinct surgeries on a fixed bundle.

We also proposed to answer questions of a more geometric nature. We can state
exactly when a surgery on a section of a given torus bundle contains an essential torus
or 2-sphere (or when it is Haken). Since Jorgensen has given a decomposition of the
punctured torus bundles into ideal tetrahedra, techniques are available for trying to
verify which surgeries are hyperbolic or are Seifert fibred. It should be possible to do
this in the way that Thurston did it for surgeries on the 'figure-eight' knot. While we
do not expect any surprises, this might be an illuminating computation. In any case,
the problem remains open as to which surgeries on a section of a given torus bundle
are hyperbolic or Seifert fibred (or even have finite fundamental group).

When Waldhausen first introduced examples of orientable, irreducible 3-manifolds
with infinite fundamental group that were not Haken, he observed that each of the
examples that he gave had a finite-sheeted covering that was Haken. This led to the
conjecture that orientable, irreducible 3-manifolds with infinite fundamental group
are 'almost' Haken; i.e. have a finite-sheeted covering that is Haken. This conjecture
has certainly been compelling. Recently, Thurston discovered a large family of
orientable, irreducible 3-manifolds with infinite fundamental group that are not Haken
(and not Seifert fibred). More examples of such manifolds were added to those
discovered by Thurston in the work of Hatcher and Thurston. Furthermore, in all of
these examples there was no evidence for or against the above conjecture.

We have given explicitly examples of manifolds obtained by surgery on a section of
a torus bundle that are not Haken and yet have cyclic coverings that are Haken. In
general, many such surgeries that are not Haken will have cyclic coverings that are
Haken. We believe that the best method for approaching this conjecture, in the case of
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those manifolds obtained by surgery on a section of a bundle over S1, would be to
acquire a better understanding, perhaps even a classification, of essential surfaces in
manifolds that are bundles over S1. In principle, it would seem possible that such a
program could be carried out by methods analogous to those used here. However, the
increase in complexity, when one passes from SL2(Z) to the mapping class group of a
higher genus surface, is impressive. For such an approach to succeed, it is clear that
more sophisticated techniques must be developed to deal with the combinatorics.

Perhaps, from a more general point of view, the result to prove is that if an
orientable, irreducible 3-manifold with non-empty boundary has no essential annuli
then there are at most a finite number of isotopy classes of simple closed curves in the
boundary of the manifold that can be curves in the boundary of an incompressible and
boundary-incompressible surface properly embedded in the manifold.
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