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The Boundary of Outer Space in Rank Two

MARC CULLER AND KAREN VOGTMANN

§1. Introduction

In [4] a space X, was introduced on which the group Out(Fy) of outer
automorphisms of a free group of rank n acts virtually freely. Since then,
this space has come to be known as “outer space.” Outer space can be
defined as a space of free actions of F; on simplicial R-trees; we require
that all actions be minimal, and we identify two actions if they differ only
by scaling the metric on the R-tree. To describe the topology on outer space,
we associate to each action a: F, X T — T a length function |- |o: Frn — R
defined by

19]a = ;relf_pd(w,gm)

where d is the distance in the tree T. We have |g|la = |h ™ gh|a and || =0
if and only if some point of T is fixed by all of F,,. Thus an action with no
fixed point determines a point in R¢ — {0}, where C is the set of conjugacy
classes in Fy,. Since actions differing by a scalar multiple define the same
point of outer space, we have a map from X, to the infinite dimensional
projective space P¢ = R¢ — {0}/R*. It can be shown that this map is
injective (see [3] or [1]). We topologize X, as a subspace of PC. ‘

Part of the motivation for the definition of outer space was the idea
of developing an analogy between the action of Out(F,) on outer space
and the action of the mapping class group of a surface on the Teichmiiller
space of that surface. In particular, the action of the mapping class group
on Teichmiiller space was exploited by Thurston in his classification of
automorphisms of surfaces. Thurston gives an embedding of Teichmiiller
space into an infinite dimensional projective space and shows that its closure
in this projective space is a finite-dimensional ball; he then uses the fact
that the ball has the fixed point property to analyze the action of a single
automorphism on the closure of Teichmiiller space.

We would like to know how much of Thurston’s theory can be adapted
to automorphisms of free groups. It is shown in [4] that outer space is
contractible of dimension 3n — 4, and in [3] that its closure X, in P€ is
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compact. M. Steiner and R. Skora have recently announced proofs that Xn
is contractible. It is not known whether the closure of outer space is finite
dimensional or whether it is an ANR; if it is an ANR, this together with
contractibility of X, would imply that X, has the fixed point property.

In this paper we restrict ourselves to the case n = 2. We give an explicit
description of the closure X = X, of outer space in rank 2. In particular,
we show that X is contractible, and give an imbedding of X as a two-
dimensional subset of R® which makes it clear that X is an ANR.

The paper is organized as follows. In section 2 we recall some basic
definitions and properties of actions on R-trees. In sections 3-5 we determine
what lies on the “boundary” X = X — X. As a starting point, we have by
[3] that points in X correspond to non-trivial actions of F; on R-trees with
cyclic arc stabilizers.. In addition, we note in section 2 that the stabilizer
of an arc in any limit of free actions is either trivial or is a maximal cyclic
subgroup of the stabilizer of each of its endpoints. We remark that Cohen
- and Lustig [2] have given criteria for deciding when an action of F;, on a
simplicial tree is a limit of free actions. For n = 2 these criteria consist of
the above conditions on arc stabilizers. (For n > 2 an extra condition must
be imposed.)

In section 6 we describe the imbedding of X into R®. One consequence
of our analysis in sections 3-5 is that all actions in X are geometric, in the
sense that they are isomorphic to actions of the fundamental group of a
punctured torus or twice-punctured disk on trees which are dual to projec-
tive measured laminations on those surfaces. Our embedding demonstrates
how the projective lamination spaces for various surfaces fit together to
form outer space. A description of these projective lamination spaces is
given in Hatcher [6].

We would like to thank Peter Shalen for helpful conversations and for
inventing the name “outer space,” Richard Skora for explaining the proof
of his realization theorem, and Curt McMullen for supplying the computer
programs used to generate the portrait of outer space.
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§2. Group actions on trees.

In this section we establish some notation and conventions that we will use
throughout the paper. For the general theory of group actions on R-trees,
we refer to [3] or [1].

By a tree we will always mean an R-tree, with metric d. A germ at a
point p of a tree is an equivalence class of rays from p, where two rays are
equivalent if they agree in some neighborhood of p. An R-tree is simplicial
if it is homeomorphic to a simplicial tree, i.e. to a connected, 1-connected,
1-dimensional simplicial complex.

Our actions on trees will always be left actions. Two actions ay: GxT; —
Ty and aq: G x Ty — Ty are isomorphic if there is an equivariant isometry
from T7 to T5. An action a:G x T — T is simplicial if T is a simplicial
tree. The action is minimal if T has no proper invariant sub-tree. The

translation length of an element g € G is given by
= inf d .
|9]e iof, (p, 9p)

We will often omit the subscript «, when no confusion will result. If |g|o =
0, then g fixes a subtree Fix(g) of T'; in this case g is called elliptic. If g has
no fixed point, g is called hyperbolic and has a translation axis Axis(g). By
the characteristic set of g we will mean Fix(g) if ¢ is elliptic and Axis(g) if
g is hyperbolic.

Definition. An action of a group on an R-tree will be said to have mazimal
cyclic arc stabilizers if any non-trivial stabilizer of an arc is a maximal cyclic

subgroup of the stabilizers of each endpoint of the arc.

Lemma 2.1. Let a: F, x T — T be an action which is a limit of free

simplicial actions. Then a has maximal cyclic arc stabilizers.

Proof. Let e be an arc of T with endpoints v and w. As noted in the
introduction, [3] show that any limit of free actions has cyclic arc stabilizers,
so the stabilizer of e is cyclic. If it is not a maximal cyclic subgroup of the
stabilizer of v, there is an element g in the stabilizer of v such that ge # e
but gke = e for some k > 0. Let {an: F2 x T, — Ty} be a sequence of free
simplicial actions such that the associated (non-projective) length functions
| - |a, converge to the length function |- |4.

By [11], the topology on X; as a subset of P is the same as the Gromov
topology. In particular, we can find points w,, € Ty, such that d(wn, gwn) —
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d(w, gw) and d(wn, g¥w,) — d(w, g¥w). Since g has an axis in each of th
trees Ty, we have

d(wn,gkwn) = d(wn, gwn) + (k — 1)|9]a, -

This gives a contradiction, since the left-hand side converges to d(w, g*w) =
0, while the right-hand side converges to d(w, gw) > 0. [
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§3. Simplicial actions in the boundary.

In this section we describe all actions in X with the property that some
primitive element of F, has a fixed point. When we complete our analysis
of all actions in X, we will see that these are exactly the simplicial actions
indX =X - X.

Definition. Let G be a group acting on an R-tree T. A subtree H of T
is a fundamental domain for the action if GH = T and if for any g € G,
gH N H is either empty, a single point, or equal to H N Fix(g).

The following lemma gives a criterion for an action of F; on a tree to be
simplicial, and produces a fundamental domain for the action. The lemma
is easily generalized to free groups of higher rank; we give the statement

for rank 2 to avoid complicated notation.

Lemma 3.1. Let {a,b} be a basis for F;, let F; x T — T be a minimal
action, and let H be a non-empty closed subtree of T. Suppose that T—H is
the disjoint union of open sets Sq,S,-1,Ss, and Sy-1 with finite boundary.
Assume, for z,y € {a,a™,b,b71}, that

l.zHNH #0

2. zH C Fix(z) USz;

3. 2(Se USyUSy-1) C Sy, forz #y,y~ "

Then H is a fundamental domain for the action of F, on T, and T is a

simplicial tree.

Proof. We may assume that Fix(a) N Fix(b) = @, since otherwise, by
minimality, T is a point and the lemma is trivial.

In order to show that F5 H = T, it suffices to show that F, H is connected;
F,H is then an invariant subtree of T, which must be all of T since T is
minimal. Let T, denote the union of all translates gH, where g € F, has
word length less than or equal to n in the generators a and b. We show
that Ty, is connected for all n, by induction on n. If n = 0, this is just the
statement that H is a subtree. If n = 1, this follows from hypothesis 1 of
the lemma. If n > 1, Thy1 = aTyp Ua™ T, UbT, U b~ 1T,. Each of these
four sets is connected by induction, and each contains H so their union is
connected.

To show that ¢H N H is of the right form for any ¢ € F3, we use the
following fact.
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Claim. Let g € F3, let w be the unique reduced word in a and b repre
senting ¢, and let x be the first letter of w. Then

(i) gH c S; U(Fix(z) N H), and

(i) if gH is not contained in S, then g = z* for some k.

Proof. The proof is by induction on the length n of w. If n = 1, statemen!
(i) follows from hypothesis 2 and statement (ii) is trivial.

If n > 1, we have w = zv, where v is a word with first letter y # ™!
Let p be a point of H. By induction, we know that vp € Sy U (Fix(y) N H)
If vp € _5'—;, then wp = zvp € S; by hypothesis 3.

If vp is not in S, then vp € Fix(y)NH, and we have two cases to consider
If y # z, then vp is not in Fix(x), since Fix(z) and Fix(y) are disjoint. Thu:
by hypothesis 2, wp = zvp € S; . If y = z, then wp = zvp = vp € Fix(z)
since vp is not in Sz, statement (ii) implies inductively that v, and henc

w, is a power of . C

We now show that gH N H is either empty, a single point of H, or i
contained in Fix(g). If g is not a power of , then gH C S, by part (i
of the claim, so gH N H C 0S;. Since gH N H is connected, and 95, it
discrete, gH N H is either empty or a single point in this case.

If g = z* for some k > 0, the claim shows that g HNH C (Fix(z)NH)US;.
We now claim that Fix(z) N H = Fix(z*) N H, from which it follows that
gH N H C Fiz(g). The inclusion Fix(z) N H C Fix(zF) N H is trivial,
To show the opposite inclusion, let p be a point of H with z¥p = p. By
hypothesis 2, zp € Fix(z) U S;. If zp € Fiz(z), we are done. I zp € 5.
then by hypothesis 3, z'p is in S, for all 7. Thus p = z*p € 8S,. It follows
that zp and z2p are also in the 8S;; if they were in the interior of S, then
z¥p would be as well. The arc [p, zp] is in H since p and zp are; therefore
z[p, zp] = [zp, z?p]is in S;NH = 8S,. But 85, is a discrete set, so [zp, z2p]
is a single point, i.e. zp = z?p = p.

To see that T is a simplicial tree, consider the minimal subtree K of
H which contains the boundary of H. This subtree K is a simplicial tree
since the boundary of H is finite. We claim that F3 K is a simplicial tree;
by minimality this will imply that F» K = T, and hence that T is simplicial.
We have shown above that H NgH is either empty, a single point, or equal
to Fix(z) N H for = = a or z = b; the last case occurs only if ¢ = z*.
Thus, if K NgK C H N gH is non-empty, then it is either a single point
or one of the two trees Fix(z) N K. This implies that F3 K is simplicial; it
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remains only to show that F3K is connected. For this it suffices to show
that K N 2K is not empty for z € {a,a™*,b,b7'}. If Fix(z) N H is empty,
then z maps a boundary point of H to a boundary point of H, so KNz K is
non-empty. Thus we need only show that if Fix(z) N H is non-empty then
so is Fix(z) N K. In fact, if z fixes a point of H then it fixes a boundary
point. To see this consider a point p of 3S; and let [p,q] be the bridge
from p to Fix(z) N H. The interior points of [p,q] are not fixed by z, so
the image of the interior of [p,q] under z must be contained in S;. Thus
g€ S,, proving that a point of 0H is fixed by z. a

Proposition 3.2. Let F, x T — T be a minimal action with maximal
cyclic arc stabilizers. If some primitive element a € F, has a fixed point,
then T is simplicial.

Proof. Since a is primitive, there is an element b € F3 such that a and b
generate F,. We divide the proof into cases, applying Lemma 3.1 in each

case to find a fundamental domain H for the action.

Case 1. b has a fixed point in T'.

Since the action is non-trivial, we have Fix(a)NFix(b) = 0. Let H = [p, ]
be the bridge from Fix(a) to Fix(b). Let n, and n4 be the germs at p and
q determined by H. We take S, (resp. S,-1) to be the union of all open
rays in T emanating from p with germ a™n, for some n > 0 (resp. n < 0).
Similarly, let Sy (resp. Sp-1) be the union of all open rays in T' emanating
from ¢ with germ b"n, for some n > 0 (resp. n < 0). (See Figure 1)

Figure 1
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Note that aH N H = {p}, since otherwise a would fix a subarc of H, anc
H would not be the bridge from Fix(a) to Fix(b). Similarly, bH N H = {q}
Also, a"HNH = {p} and b"H N H = {q} for all n # 0, since otherwise thc
generator of an arc stabilizer would be included into a vertex stabilizer as
a proper power, contradicting our hypothesis that the action have maximal
cyclic arc stabilizers. This shows that the sets Sg,.5,-1, 55, 55-1, and H arc
disjoint. The other hypotheses of Lemma 3.1 are easily verified, showing
that H is a fundamental domain for the action.

Case 2. b is hyperbolic and Fix(a) N Axis(b) = 0.

Let [p, g] be the bridge from Fix(a) to Axis(b), let [r, br] be a segment of
Axis(b) containing ¢ in its interior, and let H = [p,¢] U [r,br]. Let 5, be
the germ at p determined by [p, q], let 1, be the germ at r determined by
b=1[r,br],and let np, be the germ at br determined by b[r, br]. We take S,
(resp. S;-1) to be the union of all open rays in T' emanating from p with
germ a”n, for some n > 0 (resp. n < 0). We take Sp (resp. Sy-1) to be
the union of all open rays in T emanating from br (resp. r) with germ ns,
(resp. nr). (See Figure 2)

p
Mp
N, Nyr Axis(b)
—s o—p
r q br
Figure 2

Case 3. b is hyperbolic and Fix(a) N Axis(b) is a point.

Let {p} be the intersection of Fix(a) and Axis(b), and let [r,br] be a
segment of Axis(b) with p as its midpoint. If a™[p,br] = [p,r] for some n,
then ba™ stabilizes br, and we are in Case 1 with b replaced by ba™. If
a™[p, br] is never equal to [p,r], set H = [r,br]. Let 5,1 be the germ at p
determined by [p, br], and 7,2 be the germ at p determined by [p,r]. Let
7r be the germ at r determined by b~'[br,p], and 73 be the germ at br
determined by b[r, p]. We take S, (resp. S,-1) to be the union of all open
rays in T’ emanating from p with germ a™7np,; or a™np o for some n > 0
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(resp. n < 0). We take Sy (resp. Sp-1) to be the union of all open rays in
T emanating from br (resp. r) with germ 7, (resp. 7r). (See Figure 3)

Figure 3

Case 4. b is hyperbolic and Fix(a) N Axis(b) is an interval of length less
than [b].

Let [p, q] = Fix(a) N Axis(b), and let H = [r, br] be a segment of Axis(b)
containing [p, q] in its interior. We may assume ¢q € [p,br]. Let n, be the
germ at p determined by [p,r], and 1, be the germ at ¢ determined by
[q,br]. Let 5, be the germ at r determined by b~[br,q], and 7 be the
germ at br determined by b[r,p]. We take S, (resp. Ss-1) to be the union
of all open rays in T emanating from p with germ a™n, or from ¢ with germ
a™n, for some n > 0 (resp. n < 0). We take Sj (resp. Sp-1) to be the union
of all open rays in T' emanating from br (resp. r) with germ - (resp. nr).
(See Figure 4)

N, N, n, y. Axis(b)
—s < > S
v P q br
Figure 4

Case 5. b is hyperbolic and Fix(a) N Axis(b) is an interval of length equal
to |b].

Let H = [p, bp] = Fix(a) N Axis(b). Let 1, be the germ at p determined
by b~'H, and ns, the germ at bp determined by bH. We take S, (resp.
Sa-1) to be the union of all open rays in T emanating from p with germ
a™np or from bp with germ a”npp for some n > 0 (resp. n < 0). We take Sp
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Figure 5

(resp. Sp-1) to be the union of all open rays in T' emanating from p (resp.

bp) with germ 7, (resp. mpp). (See Figure 5)

Case 6. b is hyperbolic and Fix(a)N Axis(b) is an interval of length greater
than |b].

Let [p, q] = Axis(b)NFix(a). Then a and b~'ab both fix an initial segment
of [p,q]. But a and b~'ab do not commute, so the action has non-cyclic arc
stabilizers, contradicting the fact that the action is a limit of free simplicial

actions. o

Definition. Let F5; X T'— T be a simplicial action. The quotient diagram
for the action is the quotient T/ F; with vertices and edges labelled by the
isomorphism type of their stabilizers. Two quotient diagrams are isomor-
phic if there is an isometry between the graphs so that corresponding edges

and vertices have the same labels.

Given the fundamental domain for a simplicial action, one can easily
construct the quotient diagram. Figure 6 shows the quotient diagrams,
without specifying the lengths of the edges, in each case of the previous

lemma.

We will need to be able to determine when two actions which satisfy the
hypotheses of the previous proposition are actually isomorphic. Recall that
two actions a1: G X Ty — T and a2: G X T — T4 on simplicial R-trees are
isomorphic if there is an equivariant isometry ¢:77 — T%. Fundamental
domains H; C Ty and Hy C T3 are said to be isomorphic if there is an
isometry : Hy — H, sending vertices to vertices, such that the stabilizer
of each vertex and edge in Hj is the same as the stabilizer of its image under
. If @; and a3 are isomorphic actions, and H; C T is any fundamental
domain for a;, then Hy = ¢(H;) C T3 is an isomorphic fundamental do-
main for ay. Conversely, if : H; — H, is an isomorphism of fundamental
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4 Z 4 <>
ety

Case 1 Case 2
y4 Y4
z y4 y4
O O O
Case 3 Case 4 Case 5
Figure 6

domains for a; and o, then ¢ extends to an equivariant isometry of trees,
so a1 and a2 are isomorphic.

The analysis in the proof of Proposition 3.2 includes the computation
of a fundamental domain and of the stabilizers of the edges and vertices
of the fundamental domain for any action satisfying the hypotheses of the
proposition; thus a classification of all such actions is implicit in the proof.

The following proposition makes this explicit.

Proposition 3.3. Let a be a primitive element of F; which fixes a vertex

in each of two actions Fy x T1 — Ty and Fy x Ty — T, on simplicial R-trees

with maximal cyclic arc stabilizers. Assume that the quotient diagrams are
isomorphic. Then

1. If T;/F; is a single edge (Case 1 of Proposition 3.2), then there are
elements by and by of F, such that {a,b;} is a basis of F; and b; stabilizes
a vertex of T;. The actions are isomorphic if and only if by is conjugate
to by. “

2. If T;/ F> has one free edge and one loop (Case 2 of Proposition 3.2), there
are elements by and by of Fy such that {a,b;} is a basis of F; and b; is a
stable letter for the HNN decomposition determined by the action of F3
on T;. The actions are isomorphic if and only if by is conjugate to b,.

3. If T;/ F, is homeomorphic to a circle (Cases 3,4 and 5 of Proposition 3.2),

the actions are isomorphic.

Proof. Let p; € T; be a vertex fixed by a. In the proof of Proposition 3.2 we
describe a fundamental domain H; C T; with p; € D;. The hypothesis that
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T,/ F, is isometric to T3/ F> implies that these fundamental domains ar
isometric. However, some choices were made in the construction of thes
fundamental domains; we must show in each case that the fundamenta
domains can be constructed so that they are isomorphic.

Note that if {a,b} is a basis of F, then every basis which contains a ha
the form {a,a™ba™} where m,n € Z. In particular if {a,b1} and {a,b,
are bases then b; is conjugate to be if and only if b; = a™bya™" for som:
integer n.

If the actions are in Case 1 then any edge incident to p; is a fundamenta
domain. For each integer n there is such an edge for which the stabilize
of the other endpoint is the cyclic group generated by a™b;a™™. Thus ther
exist isomorphic fundamental domains for the two actions if and only if b
is conjugate to ba.

If the actions are in Case 2 then any arc which consists of two edges an«
contains p; as an endpoint is a fundamental domain. The edge which i
disjoint from p; is a fundamental domain for the action of an element of th
form a™b;a™™ by translation on its axis, and every integer n arises for som
fundamental domain. Thus the two actions have isomorphic fundamenta
domains if and only if b; is conjugate to bs.

In the other cases, let b be any primitive element such that that {a,b
is a basis of F3. Then in both trees the axis of b contains Fix(a), and :
fundamental domain for the action of F; on T; is comstructed by taking
a fundamental domain for the translation action of b along its axis whicl
is symmetric about the midpoint of Fix(a). These are clearly isomorphi

fundamental domains, so the actions are isomorphic. C

The following corollary will be used in the proof that all actions satisfyin;
the hypotheses of Proposition 3.2 are limits of free simplicial actions.

Corollary 3.4. Let {a,b} be a basis of F,. Let r be a non-negative rea
number or infinity. Up to scaling of the metric, there is a unique action o
F3 on an R-tree with maximal cyclic arc stabilizers for which

1. |la| =0

2. |aba=*b71|/|b] = r and

3. |b] is minimal among all primitive elements b such that {a,b} is a basi:
of F,.

This action is simplicial.
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Proof. By Proposition 3.2, any action with maximal cyclic edge stabilizers
and with |a] = 0 is simplicial. Thus to construct actions with properties
(1)-(3), we need only give give fundamental domains; for this, we will refer
to the cases of Proposition 3.2.

An action with r = co (i.e. |b] = 0), is given by Case 1. The length of
the edge in the quotient is |aba™1571|/4.

If 2 < r < oo, an action is given by Case 2, where the loop in the quotient
has length [b| and the other edge has length (Jaba=1b7| — 2|b|)/4.

If r = 2 an action is given by Case 3, where the length of the loop in the
quotient is |b|.

If 0 < r < 2 an action is given by Case 4, where the length of the
edge fixed by a is |b| — |aba='b7|/2, and the length of the other edge is
laba—1671|/2.

If r = 0 an action is given by Case 5, where the length of the loop in the
quotient is [b|.

By Proposition 3.3, the actions are uniquely determined by the primitive
element a and the quotient diagram in Cases 3, 4 and 5. In cases 1 and 2,

the additional fact that |b| is minimal guarantees uniqueness.
a

We finish this section by showing that the actions which we have been

considering are actually points of X.

Proposition 3.5. Let F xT — T be an action on a simplicial R-tree with
maximal cyclic arc stabilizers. If a primitive element a of F; fixes a vertex
of T then this action is contained in X.

Proof. We will give an explicit sequence of free actions Fo XT,, — T, where
T, is a simplicial R-tree, which converge to the given action in the length
function topology. Let |- |, denote the length function for the action on T,
and let r = |aba™167|/|b] € [0,00]. By Lemma 2.1, the limit of any con-
vergent sequence of free actions is an action with maximal cyclic edge sta-
bilizers. Thus by Corollary 3.4 we need only exhibit a convergent sequence
of free actions so that lim,_, ||, = 0 and limy_.e0 [aba™ 1672, /|b]n = 7.

As in [4] we will describe the actions in this sequence by giving the
quotient of the action together with a length for each edge and a labelling
of the edges in the complement of a maximal tree by elements of F5. (The
labelling specifies an identification of F, with the fundamental group of the
quotient.)
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If r = oo, the action on T, is described by Figure 7, where the edges
labelled a and b have length 1/n and the unlabelled edge has length 1.

aQ_Qb

Figure 7

If 2 <r < oo, the action on T, is again described by Figure 7, where
the edge labelled a has length 1/n, the edge labelled b has length 1 and the
unlabelled edge has length (r — 2)/4.

If 0 <r < 2, the action on T, be described by Figure 8, where the edge
labelled a has length 1/n and the edge labelled a™b has length r/(2 — r).

a@ anb

Figure 8

If r = 0, the action on T, is again described by Figure 8, but both edges
have length 1/n. a
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§4. A division process.

Throughout this section we fix an action Fy x T — T.

Definition. If {a,b} is a basis of F; with a and b hyperbolic, we denote
by A(a,b) the length of the segment Axis(a) N Axis(b). If this intersection
is empty, we set A(a,b) = 0.

In the case where one of a or b has length less than or equal to A(a,b)
it is possible to change basis by a Nielsen transformation to either reduce
the length of the overlap of the axes or to produce a basis element with a

fixed point:

Proposition 4.1. Let {a,b} be a basis for F2, with 0 < |b| < |a|, such that
the translation directions of a and b along their axes agree. Assume that
o] < Aa,b). If [b~'a| # O then A(b,b~ a) = A(a, b) — [b]. I [b] < A(a, b)
then |b~'a| = |a| — |b].

Proof. Let p be the initial endpoint of the overlap Axis(a)N Axis(b), where

this segment is oriented in the common translation direction of a and b. We

consider three cases.

Case 1. |b| = |q|

In this case b~ 'a fixes p, so |6~ la| = |a| — |b] = 0.
Case 2. |b| < A(a,b) and |b] < |a].

It is an easy exercise to check that the segment from p to b~ lap is a
fundamental domain for the action of b6~ 'a on its axis. This segment has
length |a|—|b] and meets Axis(d) in its initial subsegment of length A(a, b)—
|b] (see Figure 9).

Axis(a) Axis(a)
ap b ap
or
P bp p bp ap

Axis(b) Axis(b)

Figure 9
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Case 3. |b| = A(a,b) < |al-

In this case we claim that Axis(b~'a) is either disjoint from Axis(b) or
meets it in a single point. In particular A(b7a,b) = A(a,b) — |b] = 0. For
this it suffices to check that the segment from p to b~'ap meets Axis(b)
only at p, since this segment contains a fundamental domain for the action
of b~'a on its axis. This is also an easy exercise; see Figure 10.

b'1ap Axis
ap
p bp

(a)
Axis{b)

Figure 10

The proposition above gives rise to a division process: beginning with a
basis {a, b} of F; consisting of hyperbolic elements, we first replace b by 5!
if necessary so that the axes for a and b are oriented in the same direction
on their overlap; next, we interchange a and b if necessary so that |b| < |al.
If || < A(a,b), we replace the longer element a with b~'a. If |b71a| > 0,
we repeat the process from the beginning.

The process terminates if we obtain an elliptic generator or if we obtain a
basis {a’, b'} whose shorter element is longer than A(a’,d'). If we obtain an
elliptic generator, the action is simplicial and can be determined explicitly
by the methods of section 3. If the shorter basis element has length greater
than the overlap, we have the following proposition.

Proposition 4.2. Let {a,b} be a basis of F, with |a| > |b] > A(a,b).
Then the action is free and simplicial.

Proof. We consider separately the cases when the axes for a and b are

disjoint and when they have non-empty intersection.
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Case 1. Axis(a) N Axis(b) = 0.

Let [p, q] be the bridge from Axis(a) to Axis(b), and let H = [p,ap] U
[p,q] U [g,bq]. Let 7, be the germ at p in the direction a™'[p,ap], let nqp
be the germ at ap in the direction ap, ap], let n, be the germ at g in the
direction b~![g, bg], and let np, be the germ at bq in the direction b[g, bq].
We take S, (resp. S,-1) to be the union of all open rays in T' emanating
from ap (resp. p) with germ n,, (resp. 7,). We take Sp (resp. Sj-1) to
be the union of all open rays in T emanating from bg (resp. ¢) with germ
nbq (resp. mg). We now apply Lemma 3.1 to see that H is a fundamental
domain for the action of F, on T.

The action in this case is free and simplicial, with quotient a “barbell”

O—0O

Figure 11

as shown in Figure 11.

Case 2. Axis(a) N Axis(b) # 0.

Let p be the initial point of the overlap and set H = [p, ap] U [p, bp]. Let
np,1 be the germ at p in the direction a=![p, ap], let n4p be the germ at ap
in the direction a[p, ap], let 1,2 be the germ at p in the direction 4~ [p, bp],
and let n3, be the germ at bp in the direction b[p, bp]. We take S, (resp.
S,-1) to be the union of all open rays in T' emanating from ap (resp. p)
with germ 7.p (resp. 7p,1). We take Sy (resp. Sp-1) to be the union of
all open rays in T emanating from bp (resp. p) with germ npp (resp. 7p2)-
Lemma 3.1 again applies to show that H is a fundamental domain for the
action of F, on T the action is free and simplicial, with quotient a “theta
graph” as shown in Figure 12. If A(a,b) = 0, the theta graph degenerates

to a “rose”.

O

Remark. If the division process does not terminate, the lengths of the
basis elements approach zero, while the difference A(a, b) — |a| — |b] remains

constant.
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Figure 12

For the rest of the section we fix a basis {a, b} of F3. Let a be any action
of F, on an R-tree T.

Definition. If @ and b are hyperbolic and Axis(a) N Axis(b) is a nontrivial
arc, we define the slope of a to be *|a|/|b|, where the sign is positive if and
only if the translation directions of a and b agree on the overlap. If the
overlap is empty or a point, or if a or b is not hyperbolic, then the slope is
zero if |a| < |b|, infinite if |a| > |b] and undefined if |a| = |b].

Note that the division process always terminates if the slope is rational.

Proposition 4.3. Let Fy, x Ty — Ty and F;, x T, — T, be actions on
R-trees. Assume that for each action there is a primitive element which has
a fixed point and that the quotient diagrams are isomorphic and homeo-
morphic to a circle (Cases 3, 4, and 5 of Proposition 3.2). The actions are
isomorphic if and only if they have the same slope.

Proof.

By Proposition 3.3, actions of this type are determined up to isomorphism
by the conjugacy class of the primitive element of length zero and the
quotient diagram. Thus we must show that the slope determines which
primitive element has a fixed point. This is clear if the slope is 0 or cc.
Otherwise a and b are hyperbolic in each action, so the division process
can be started. The slope is rational because both |a| and |b| are integer
multiples of the total length of the quotient circle. Thus the division process
must terminate. Since the actions are not free, it terminates by producing
a primitive element with a fixed point.

We claim that for both actions, the division process produce the same
primitive element. This follows from the observation that the division pro-
cess, and the associated sequence of basis changes (Nielsen transformations)

are completely determined by the slope. The sign of the slope determines
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whether b should be replaced by ! at the beginning of the process. The
generators a and b must be interchanged if and only if the absolute value of
the slope is less than 1. From that point onward the process is determined
by the ratio |a|/|b]. O

Next we use the division process to classify actions with overlap which is

either shorter or longer than |a| + |3].
Proposition 4.4. If A(a,b) < |a| + |b|, the action is simplicial.

Proof. By Proposition 4.2, it suffices to show that the division process
always terminates if A(a,d) < |a| + |b|. Assume that the division process
does not terminate. Then we have a sequence {a;, b;} of bases for Fy such
that the lengths of a; and b; approach zero. But A(as, b;) — |ai| — |bi] =
A(a,b) — |a|] — |b] is constant and less than zero for all . This is a contra-

diction, since A(a;, b;) is positive for all 4. O

Proposition 4.5. If A(a,b) > |a|+|b|, there is an arc stabilizer containing
a free subgroup of rank two in F.

Proof. Since |a|+|b] < A(a, b), we can apply the division process to obtain
a sequence {a;, b; } of bases; since A(ai, b;)—|ai|—|b;| remains (constant and)
positive, the only way the process can terminate is if b, is elliptic for some n.
In this case, the basis {an—1,b,—1} has 'Ian_1| = |bp-1| < %A(an_l,bn_l).
Now note that b;';an—1 and the commutator [a;};, b;1,] each fix an initial
segment of the overlap Axis(an—1) N Axis(bp—1). Since these two elements
generate a free group of rank two, we have a non-cyclic arc stabilizer.

If |a|/]b| is not rational, the division process does not terminate. In this
case the lengths of a; and b; approach zero, while A; = A(ai, b;) approaches
a positive constant. Thus, for n sufficiently large, we have |an|+2]bn| < An.
Since |ap| + |bn] < A, the commutator [ay,, b,] fixes an initial segment of
the overlap Axis(an,)NAxis(b,), and since |a,|+2[bn| < A,, the commutator
[an, b2] fixes a (smaller) initial segment of the same overlap. Since these two
commutators generate a free group of rank two, we again have a non-cyclic

arc stabilizer. m]
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§5. Critical overlap: A(q,b) = |a| + |b|

Throughout this section we let F» X T — T be a minimal action and we
assume that F, is generated by hyperbolic elements a and b, where the
axes of a and b meet in a segment of length A = |a| + |b]. Note that
|aba=1b~!| = 0, so this action is not in X. As in section 4, we define the
slope of the action to be the extended real number m = +|a|/|b|,where the
sign is positive if and only if the translation directions of @ and b agree
on the overlap of their axes. For convenience we will assume that for the
action on T the translation directions agree; there is no loss of generality
since this condition holds after replacing b by b~'. We begin by giving a
simple construction, for each m, of a tree GT,, with a natural Fy-action.
We then show that T is equivariantly isometric to GT,,.

The tree GT), is the dual tree to the measured foliation of the punctured
torus by lines of slope m. Specifically, it is constructed as the space of
leaves of a PL measured foliation of a simplicial complex ¥, which is equiv-
ariantly homeomorphic to the universal cover of the punctured torus with
a countable number of points added at infinity. The general theory of such
measured foliations and their relation to actions on R-trees is developed
in [5]. While our construction is self-contained, we use results from [5] to
show that the space which we construct is an R-tree.

If m is rational then the division process described in the last section,
when applied to {a, b}, terminates at a basis containing one elliptic genera-
tor which fixes a fundamental domain for the action of the other generator
on its axis. Such actions are described in Case 5 of Proposition 3.2: the
action is simplicial, the quotient graph is a circle with one vertex, the stabi-
lizer of the edge is infinite cyclic, and the vertex stabilizer is free of rank 2.
The tree GT,,, for m rational, is the dual tree to a foliation of the punctured
torus by parallel simple closed curves, which is a simplicial tree. One can
check that T is equivariantly isometric to GTr,. However, the details of the
argument in the rational case differ from those in the irrational case; since
the rational case can be handled by the methods of section 3, we assume
for the rest of this section that m is irrational.

Let S be the unit square [0, 1] x [0, 1] foliated by line segments of slope
m. To construct the simplicial complex ¥, we take a copy wS of S for each
reduced word w in the generators a and b of F5, and glue them along their
edges according to:

wi(l,y) ~ wo(0,y) if wilwe = a
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wi(z,0) ~ wa(z,1) if wi'we =b

There is a natural left action of F; on ¥. The foliations on the squares
wS patch together to give a PL foliation F,, of ¥. There is a transverse
measure on F,, which is inherited from the transverse measure on the
square, in which the length of a monotone arc transverse to the leaves is
the length of its projection onto the direction of slope -1.

Deleting the corner points of S and identifying opposite sides gives a
punctured torus. The complement in ¥ of the set of corner points of the
squares wS can be identified in a natural way with the universal cover of
this punctured torus. We also have a natural identification of the universal
abelian cover of this torus with R?2 — Z2, where b acts by shifting down-
ward and a acts by shifting to the right. The covering projection from the
universal cover to the universal abelian cover extends to a map 7: & — R?
which sends S to [0, 1] x [0, 1].

A leaf of F,, meets a square wS in a line segment. This gives each leaf
a natural simplicial structure in which these line segments are the edges.
Following Gillet and Shalen, a leaf of F, is called classical if does not
contain a corner of any translate of S, and singulaer if it does contain a
corner. A classical leaf is homeomorphic to the real line, while a singular
leaf is homeomorphic to a simplicial tree, with a vertex of infinite valence
coming from each corner which it contains. Note that the map m: ¥ — R?
takes leaves of F,, to lines of slope m. It follows that a singular leaf has
only one vertex which is not bivalent, since a line of irrational slope passes
through at most one point of the integer lattice in R2.

In the language of [5], ¥ is a simply-connected uniform R-foliated surface
with points at infinity. It is proved in [5, Theorem 5.20 and Proposition
5.25] that the leaf space of such a foliation is an R-tree. We define GTy, to
be the leaf space of Fp,. Thus the underlying topological space of GT}, is
the quotient ¥/ ~, where p ~ ¢ if and only if p and ¢ lie on the same leaf of
the foliation. The metric on GT,, is induced by the transverse measure on
Fm; the distance between two leaves is the measure of an arc joining them
which meets each leaf of F,, in a connected set.

We will call a point of GT,, a vertez point if it corresponds to a singular
leaf of the foliation, and an edge point if it corresponds to a classical leaf.
This agrees with the usual notion of a vertex point as a point from which
more than two germs of arcs emanate. An edge point has exactly two
germs of arcs emanating from it. This implies that if an edge point is
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contained in the interior of two arcs then it is contained in the interior of
their intersection.

The next step is to define an equivariant map ¢: GT,, — T. We will do
this by defining a map ¢¢ on ¥ which is constant on leaves of Fi,; this
map factors through GT, to give ¢. To define o, let [p,q] C T be the
intersection of the axes of a and b, where abp = ¢. By scaling the metric
on T we may assume that [p, g] has length /2. Define ¢¢ on the diagonal
of slope —1 of S to be an isometry with ¢(0,1) = p and ¢0(1,0) = ¢g. The
diagonal contains a unique point of each foliating line segment of S; extend
¢o over S by making it constant on these line segments.

Next extend ¢g to all of ¥ equivariantly: if z € wS, define ¢o(z) =
woo(w™1z). To check that ¢ is well-defined, we must show both that
do(w(z,0)) = ¢o(wd(z,1)) and ¢o(w(l,y)) = do(wa(0,y)) for all z,y €
[0,1] and all words w. This reduces to showing that ¢o(z,0) = bgo((z,1))
and ¢o(1,y) = ado((0,y). This can be checked using analytic geometry and
remembering that |a| + |b] = v/2 and m = |a|/|b| (see Figure 13).

(0,1)
b (1,m+y)
¢o la]
al :
(0,y) { P (1.y)=a(0.y) P q
(1,0
(0.y-m) -~
Figure 13

Finally, since ¢¢ is constant on leaves of Fp,, it descends to an equivariant
map ¢ on the quotient tree GT,,.

Definition. An arc o of GT, is straight if a is the image of a non-
degenerate line segment which is contained in some square wS and is trans-
verse to the foliation on wS.

Note that the image of a square wS in GTy, is a straight arc which, by def-
inition, is mapped isometrically by ¢ to the arc Axis(waw~)NAxis(wbw™!)
in T
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The following lemma shows that ¢ is a morphism of R-trees in the sense
of [8], i.e. that each point of GTy, is in the interior of an arc which is
mapped isometrically by ¢.

Lemma 5.1. There is a straight arc through each point of GT,.

Proof. The preimage of a point in GTy, is a leaf of Fp,, which contains a

point in the interior of some square. O

The map ¢ is also a morphism of R-trees in the sense of [5], i.e. each
arc of GT,, can be subdivided into a finite number of subarcs which are

mapped isometrically by ¢. This fact is contained in the following lemma.

Lemma 5.2. The unique arc joining two points of Gy, is a finite union

of straight arcs.

Proof. Every pair of points in X can be joined by a path which meets
only finitely many fundamental domains. Thus the unique arc joining the
images of those points in GT}, is contained in the subtree of GT,, which is
the image of this path. This subtree is a finite union of straight arcs. Since
a nondegenerate subarc of a straight arc is straight, any arc contained in

this subtree is also a finite union of straight arcs. O

We now apply the lemmas above to show that ¢ can only fail to be
injective in a very special way: If ¢ is not injective then there exist two
straight arcs in GTym, emanating from a vertez point v and meeting only
at v, which are identified under ¢. We describe this by saying that ¢ has
a fold at v. Assume that p and gq are distinct points with ¢(p) = ¢(q).
Then the segment [p,¢] maps under ¢ to a closed loop in the tree T. By
Lemma 5.2, [p, q] can be subdivided into a finite number of straight arcs;
since straight arcs are mapped isometrically by ¢, a fold must occur at one
of these subdivision points. We claim that this subdivision point must be a
vertex point. There are exactly two germs of arcs emanating from an edge
point and these are represented by a straight arc through that point. Thus
these germs cannot be folded by ¢.

Skora [14] has recently shown that if a closed surface group acts on an R-
tree with cyclic arc stabilizers then the tree is the leaf space of a measured
foliation on the surface. His result also applies to surfaces with boundary
if one assumes that the peripheral elements of the fundamental group have

fixed points in the tree. In our situation this condition is satisfied since
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la| + |b] = A(a, b) implies that the commutator aba~1b~'has a fixed point.
For completeness we will prove that if T has cyclic arc stabilizers then ¢ is

an isomorphism; the proof we give is essentially due to Skora.

Remark. It is not clear a priori whether the condition |a| + |b] = A(a,b)
implies that the action is Q-rank 2; if it were clear, then one could deduce
from [5] that T is dual to a measured foliation on a punctured torus.

Prbposition 5.3. If the stabilizer of each arc in T' is a cyclic subgroup of
Fy then ¢: GT,, — T is an equivariant isomorphism. In particular, if T is
a limit of free simplicial actions then ¢ is an isomorphism.

The main ingredient in the proof of Proposition 5.3 is an argument going
back to Plante [12], which is also used in [9], [7] and [14]. We describe this
argument before beginning the proof of 5.3.

By a partial translation on an interval I we mean an orientation preserv-
ing isometry whose domain and range are open subintervals of I. If f and
g are partial translations of I the composition f o g is a partial translation
with domain g~!(Domain(f) N Range(g)) if this set is non-empty. Oth-
erwise we say that f o g is undefined. Recall that a collection of partial
translations on I is a pseudogroup if it is closed under the composition
operation; the group laws hold pointwise on the subset where all of the
relevant compositions are defined.

We consider a finitely generated pseudogroup ¥ of partial translations
on an interval I, with generators {t1,%2,... ,n}. For each point p of I we
can construct the tree of definition D, as follows: Let G, be the Cayley
graph of the free group on {t1,t2,... ,t,}, i.e. the graph whose vertices are
the elements of the free group with an edge joining w to t;w for each group
element w and generator ¢;. A vertex of G, determines a composition of the
generators of ¥. In G, consider all the vertices such that the corresponding
composition is defined in a neighborhood of p. This is the set of vertices
of a subtree of G, which we define to be D,. If w is a vertex of D, then
¥ (w) will denote the corresponding element of V.

Suppose that B is a subtree of D, containing 1. We will say that B grows
ezponentially if the number of vertices of B contained in a ball of radius n
about 1 grows exponentially as a function of n.

Observe that if I is embedded as an interval in the real line then each
partial translation in ¥ extends uniquely to a translation of the line. This
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defines a homomorphism from ¥ to a finitely generated group of transla-
tions of the line, generated by the extensions of t1,... ,t,. Since a finitely
generated abelian group has polynomial growth, this has the following con-
sequence.

If a subtree B of D, has exponential growth for some p € I then, for
large r, there is a family W, C B of words of length r in t1,ts,... ,t, such
that
1. if v and w are both contained in W, then the partial translations 1 (v)

and ¢ (w) agree on an open interval containing p; and :
2. the cardinality of W, grows exponentially in r.

In our situation the interval I will arise as an arc in the tree T and
the generators of ¥ will be restrictions to subintervals of I of elements of
F,. Suppose that g1,¢2,...,9n are elements of Fy whose restrictions to
appropriate subintervals of I equal t1,1s,... ,tn respectively. Let p denote
the homomorphism from the free group on {t1,...,tn} to Fy with p(t;) =

gi,forz=1,...,n.

Claim 5.4. Assume that there is a point p of I such that the tree of
definition D, contains an exponentially growing subtree B and that p is

injective on B. Then T must have a non-cyclic arc stabilizer.

Proof. Consider the exponentially growing family W, constructed above.
Note that for w € W, we have that the length in the generators a and
b of p(w) is bounded by Mr where M is an upper bound for the lengths
of g1,92,... ,9n. Also, if we fix wg € W, then w0_1Wr is a set of words
which fixes a subarc of I containing p. We now observe that a collection
of commuting elements of F, whose lengths are bounded by Mr must have
cardinality less than 2Mr + 1, since they are all powers of some fixed ele-
ment. Since the size of W, grows exponentially, for large r there must exist
v,w € W, such that p(wy'w) and p(wy'v) do not commute. Thus T has

a noncyclic arc stabilizer, and the claim is proved. a

Proof of Proposition 5.3. Note that ¢: GT, — T is necessarily surjective
since T is assumed to be minimal. Thus we need only show that if T has
cyclic arc stabilizers then ¢ is injective. If ¢ is not injective then we have
seen that there must be a fold at a vertex point of GTr,. Following [14], we
will use this fold to construct a pseudogroup to which we can apply Plante’s
argument and Claim 5.4 to show that there is an arc in 7' with noncyclic

stabilizer.



214 M. Culler and K. Vogtmann

We begin by recording some important features of the action of F3 on
GT, which follow easily from the construction of GT,,,. We remind the
reader that m is assumed to be irrational.

1. The action of F; is transitive on the vertex points of GT},, which form a
dense subset of GT,.

2. The stabilizer of a vertex point is a (maximal) cyclic subgroup of F3,
generated by a conjugate of aba=1b~1. Under the action of the stabilizer
of a vertex point v of GT,, there are exactly two orbits of germs of arcs
emanating from v.

Let v be a vertex point at which ¢ folds, and let o7 and o2 be straight
arcs emanating from v which are folded under ¢. (Of course if there is a
fold at one vertex then there is a fold at every vertex by equivariance.) Let
o = ¢(o1) = ¢(o2) be the image of these arcs in the tree T

We consider two cases.

Case 1. The germs of 0; and o5 are in the same orbit under the action of
the stabilizer of v.

Since o7 and o9 are straight arcs, we have o; = goy for some g in the
stabilizer of v. This means that g stabilizes ¢ C T

By the first fact above, the vertex points of GTy, are dense in GTy,.
Choose any vertex point w # v on o1 and a free group element A with
hv = w such that ho; meets o1 in a positively oriented arc 7 emanating
from w. Then h~'7 is a subarc of 0; emanating from v whose image under
$ is fixed by h~1gh as well as by ¢g. Recall that ¢ is in the stabilizer of
v, which is a cyclic group. If & and g commute, then the subgroup of F,
generated by h and the stabilizer of v is abelian, and hence cyclic, and
properly contains the stabilizer of v, contradicting the second fact above.
Thus g and A~'gh must not commute, i.e. they generate a free group of
rank 2 which stabilizes a subarc of o. This contradicts the fact that T has

cyclic arc stabilizers.

Case 2. The germs of 01 and o2 are in distinct orbits under the action of
the stabilizer of v.

Since ¢y and o, are straight arcs, we can take them to be images of line
segments 6; and ; contained in squares w;.S and w25 of X. In fact, we may
assume that 6; and §; are contained in the diagonal of slope —1 of their
respective squares, and begin at a corner. Since o7 and o2 are in distinct
orbits under the action of the stabilizer of v, §; and §, begin at opposite
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corners, i.e. we may assume that § begins at w1(0,1) and 62 begins at
w2(1,0). We may further assume that §; is short enough so that its interior
is disjoint from any line of slope m through a corner of the square w;S. See

Figure 14.

S
> /

A\

Figure 14

Our argument makes use of the Poincaré map for a measured foliation
on a closed orientable surface. Consider an arc a which is transverse to
the leaves of a measured foliation (and does not pass through any of the
singularities of the foliation). Choose a normal direction for «. For each
point p on a, follow the leaf of the foliation leaving in the chosen normal
direction. This leaf will eventually either return to a point P(p) on the arc
or encounter a singularity. (Note that, since there are only finitely many
singularities, only a finite number of leaves encounter singularities before
returning to «.) This defines the Poincaré map P, the domain of which is
the complement of a finite set in o. This map is an interval exchange map,
i.e. the arc a can be divided into finitely many subintervals such that the
restriction of P to the interior of each subinterval is a translation along a.
Thus we obtain a finitely generated pseudogroup of partial translations on
a such that the domains of the generators cover all but a finite subset of a.

The quotient of ¥ by F, is a torus with a single distinguished point,
the image of the corners of S. The foliation F,, descends to a foliation
of the torus by lines of slope m with a single 2-pronged singularity at the
distinguished point.

The Poincaré maps on the images of §; and §; in the torus determine
pseudogroups of partial translations as above. These pseudogroups lift to
01 and 62, which are identified with 1 and o2 under the quotient map from
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Y to GT,. Since o1 and o2 are identified under the equivariant map ¢, we
obtain two finitely generated pseudogroups ¥; and ¥ of partial transla-
tions on the arc o in T. Let ¥ be the pseudogroup of partial translations
on o generated by ¥; and ¥,. For p in the complement of a finite set of
points in o, there is a generator of ¥; and a generator of ¥y defined at p.
Thus for p in the complement of a countable set of points, the tree of defini
tion D, for ¥ contains a rooted binary tree B, of infinite depth consisting
of the vertices of D, corresponding to positive words in the generators for
¥, and ¥y. Such a tree has exponential growth. Therefore, by Claim 5.4.
Proposition 5.3 follows once we show that the map p from the free grouy
on the generators of ¥; and ¥, to F; is injective on B,.

To prove that p is injective on B, we need to describe p in terms of the
foliation F,, on X. Let z be a point in 0. Let z1 and z2 be the points in
o1 and o2 which map to z under ¢: GT;,, — T. Let #; and £ be points in
61 and 8, which map to z; and £, under the quotient map from ¥ to GTy,.
Starting at the point Z; of §; we can follow a leaf of Fy, until it first meet:
a translate g; 16; at a point §;. The Poincaré map on the image of 6; in the
torus takes the image of Z; to the image of ¢;§;. Let y; be the point of o,
which is the image of §; Thus g¢; acts on the arc o; by a partial translation
which sends z; to the image of y;. Thus if z € o is contained in the domain
of a generator ¢ of the pseudogroup ¥; on o then p(t) = g;.

We will give a simple prescription, in terms of the map m: ¥ — RZ, for
how to find the word in the generators a and b of F, which represents g¢.
Since the leaves of F,, project to lines of slope m, m maps the leaf joining Z,
and §; to a line of slope m from 7(6;) to m(¢~'6;). Label each intersection
of this line with the integral grid so that a transition from the square 7(g¢.S)
to the square m(gzS) is labelled z, for z € {a,a™!,b,b7'}. (Intersections
with horizontal lines are labelled b or b~! and intersections with vertical
lines are labelled a or a™'). Reading the labels from 7(%;) to m(f;) then
spells the word representing g;.

The important thing to notice here is that, because we chose 6; to be
short, the word representing g1 begins with b~1 while that representing g,
begins with a. Also, notice that 5~! and a are the only letters which occur
in g;. We will think of the vertices of B, as positive words in the generators
of ¥. Since p sends each generator of ¥ to a word which only involves
the letters 5~* and a, no cancellation occurs when multiplying images of
generators.
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Let v and w be two vertices of B,. We can write v = uvi, w = uwi, where
the first letters of vy and w; are distinct. There is at most one generator of
each of the pseudogroups ¥, and ¥, defined at a given point of 0. Assume
without loss of generality that the first letter of vy is contained in ¥;; then
the first letter of w; must be contained in ¥3. Therefore the first letter of
p(v1) is b~ and the first letter of p(w1) is @, showing that p(v) is not equal -
to p(w). O

We close this section by noting that the actions considered here, with
A(a,b) = |a| + |b| are in the closure of X, i.e. they are limits of free
simplicial actions. Fix one such action a. If m = |a|/|b| is rational, the
division algorithm of Section 4 terminates at a basis {u,v} for F; such that
u has a fixed point. These actions are in the closure of X by Proposition 3.5,
with quotient diagram given by Case 5 of Proposition 3.2. The primitive
element u is uniquely determined up to conjugacy by the rational number
m, and the action is uniquely determined by u, by Corollary 3.4. If m is
irrational, approximate m by a sequence {m;} of rational numbers and let
a; be the unique action of slope m; with A(a,b) = |a| + |b|. We can then
approximate each a; by a free simplicial action S; to obtain a sequence

converging to a.
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§6. A finite-dimensional embedding of X.

Recall that the space X is topologized via an embedding X — P€ where P*
is the infinite dimensional projective space whose coordinates are indexec
by the set C of conjugacy classes in F;. The image in P¢ of an action ¢
is the projective class of the translation length function |- | of the action
The compactification X is defined to be the closure of X in P¢, so X is, by
construction, embedded in an infinite dimensional projective space. In thi:
section we will exhibit an embedding of X in a 3-dimensional projective
space. We remark that the definition of X is patterned after Thurston’
compactification of Teichmiiller space, and that finite dimensional embed
dings of Thurston’s compactification can be obtained by projecting onto :
subspace spanned by finitely many of the standard coordinates. It is nof
known, however, whether such a projection can ever be an embedding i
the case of X,; our construction is not of this type. In an effort to make
this section readable, several routine computational proofs have been lef!
to the reader.

Every point in the closure X is the length function of a unique minima
action of F on an R-tree, by [3] and [10]. Let X denote the subset o
X consisting of actions on simplicial trees. The space X is the union of :
family of simplices which, abstractly, form a simplicial complex; however
the weak topology on this complex does not agree with the topology on X
Linear coordinates on the open simplices can be described as follows: Giver
a minimal action of F on a simplicial R-tree T', consider the quotient grapl
T/F,. Each edge of T/F, inherits a metric from T in which it is isometric
to an interval in the real line. We may vary the metric on T/F, so a:
to change the lengths of these edges and consider the lifted metrics on T
This defines a k-parameter family of actions in X, where k is the numbe
of edges of T'/F,. Since the points of X are equivalence classes of action:
under scaling of the metric on the tree, this family is a (k — 1)-simples
embedded in P€. Note that this is a linear embedding since the translatior
length of any element of F; is given by an integral linear combination of
the lengths of edges in T/ F5.

Two actions have the same type if there is a homeomorphism betweer
their quotient diagrams which preserves the labels. Any two actions in the
same open simplex of X have the same type, which we will call the type of
the simplex. The type of a closed simplex is the type of its interior.
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Let o be an action in X, and fix a basis {a,b} of F». By applying the
division process of Section 4 to {a, b}, we obtain either a basis element with
a fixed point, a basis whose axes overlap less than the length of either basis
element, or a basis whose lengths are not rationally related, and whose axes
overlap in |a|+|b| (Propositions 4.3-4.5). If we arrive at a basis element with
a fixed point, the possible quotient diagrams are given in Proposition 3.2.
If we obtain a basis with short overlap, the possible quotient diagrams are
given in Proposition 4.2. If the overlap is |a|+ |b| and the slope is irrational,
the action is determined in Section 5; it is not simplicial, so is not in X.
We summarize this data below. There are two types of 2-simplices in X
(which are, in fact, in X), shown in Figure 15. These 2-simplices will be

called tiles and fins respectively.

& OO

(2)

Figure 15

There are three types of 1-simplices, listed in Figure 16. These 1-simplices
will be called edges, spikes and free edges respectively.

1 (2) (3)

Figure 16
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O W
TSR
(1) 2 (3)

Figure 17

There are three types of 0-simplices, shown in Figure 17. The first tw:
occur as endpoints of spikes and will be called heads and tips respectively
Heads are also vertices of tiles and fins. The third type of 0-simplex is :

vertex of a fin but not of a tile; it will be called a peak.

We will refer to either open or closed simplices by these names; it will b
clear from the context which is meant.

There is a natural right action of Out(F;) on P¢ by permuting the co
ordinates. The action on length functions is given as follows. For a lengt!
function I:C — R and ¢ € Out(F,) we have I¢([g]) = I([¢(g)]). This pre
serves homothety classes and hence descends to an action on the projectiv:
length functions. This action permutes the simplices of X, preserving type
and maps each simplex to its image by a projective linear transformation

We identify the abelianization of F3 = (a,b) with the free abelian grou
Z @ Z, using the basis of the abelianization consisting of the images of a an«
b under the canonical epimorphism. We will identify Out(F,) with GL,(Z
by identifying an outer automorphism with the matrix of its induced iso
morphism of Z @ Z. There is a right action of GLa(Z) on the projectiv
line by right multiplication on row vectors. Thus our identifications defin
a right action of Out(F3z) on the projective line.

We are now ready to describe our finite dimensional embedding of X
We begin by considering the map fi: X — P? given by

fi(e) = (lad| — |ab™*| : [a] = [b] : |a| + [b] + |aba™"b7"]),

where | - | denotes the translation length function for . The map f; i
continuous since the coordinates are linear combinations of the standar:
coordinates on PC.
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Lemma 6.1. |a|+ |b| + |aba=1d~| > 0 for all actions in X.

Proof. If |a| = |b] = 0, then by Proposition 3.2, Case 1, the action is
simplicial, with quotient an interval whose endpoints are stabilized by a
and b respectively. For this action, |aba='b7'| is equal to four times the
length of the interval, which is positive since the action is non-trivial. O

Thus the image of f; lies in the affine plane {(z : y : 1)} in P2.

We define an action in X to be special if the characteristic sets for a
and b are disjoint or meet in a point, or if a and b are hyperbolic with
A(a,b) < min(|al, [b]). If an action is not special it is said to be generic.

Lemma 6.2. The special actions are the two open tiles and the closure of
the fin shown in Figure 18:

Figure 18

Proof. This follows from the classification of simplicial actions in sections
3 and 4. O

A straightforward computation gives the image of the special actions
under the map f; . For example, consider the points a; and az shown in
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a
CN e
aO_LOb
N\,
b
o

o 2
1

Figure 19

Figure 19. The lengths of the relevant group elements are given in the table

below:
] o jab jab~1] jaba=15-1]
a1 £+ 4o o+ L3 £y + 289+ L3 £y + L3 281 + 269 + 243
(o2 21 L3 £+ 289+ 43 £y 4289 + L3 281 + 449 + 243
Thus,

fl(al) = (2£2 . 21 —23 . 3£1 + 4@2 + 363) =
( 2462 . El —'63 R )
301 + 446, + 343 ) 301 + 469 + 303

and

. 6 —4s : 1)
' 301 + 445 + 343 e

fi(az2) =(0:£41 — L3 : 31 + 403 + 3¢3) = (0

From these computations, we obtain the following lemma.

Lemma 6.3. The map f; gives a homeomorphism of the union of the two
special tiles and the open face they have in common onto the interior of the
quadrilateral in P? with vertices (—1/2:0:1),(0:1/3:1),(1/2:0:1)
and (0:-1/3:1). o

Consider the subset of X consisting of generic actions for which a and
b are hyperbolic. This has a partition into four subsets X1, X1, X111,
and X7y according to the following scheme: X; U Xy is the of the set
of generic actions for which a and b are hyperbolic and their translation
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directions agree on the overlap of their axes, and X5 U Xjs is the set of
generic actions for which |a| > |b] > 0. The set of generic actions is the
union of the closures of these four sets, which we denote by _XI,XH,Y III
and X rv.

Lemma 6.4. The sets 7;,3(—11,3(—111 and X v map into quadrants I, 11,
IIT and IV respectively under f;. O

Let 71 and 72 be the two involutions in Out(F3) given by

1(a) =b (b)) =a
and
m(a) =a  7o(b)=b"".

Let 01 and o2 be the reflections of the affine plane {(z : y : 1)} about the

z- and y-axes respectively. Then for any action a,
fi(a- 1) =010 fi(a) and fi(a-72) =03 0 fi(a).

Thus in order to describe the map f; it suffices to consider its restriction
to the closed set X r; the behavior on the other sets can be determined by
symmetry.

For generic actions, the first coordinate of f; can be expressed in terms

of the lengths of the generators a and b:

Lemma 6.5. For a generic action, |ab| — |ab~!| = +2min(|al, |b]), where

the sign is positive if and only if the action is in XU Xv.

Proof. As an example, consider the case where |a| > |0| > 0 and the
translation directions of a and b agree on the overlap of their axes (i.e. the
action is in X7). Since the action is generic, |b] < A(a, b); this is illustrated
in Figure 9 of Proposition 4.1. One checks that [ab~!| = |a| — |b| and
|ab| = |a| + |b|, giving the lemma in this case. The other cases are similar.
0

Lemma 6.6. For any action a, fi(a) = (z : y : 1) with |z| + |y| £ L.
Equality holds if and only if |aba=b7}| = 0.
Proof. This is an easy calculation for actions in X ;. The lemma, follows

by symmetry together with Lemma 6.3. O

For any generic action «, recall that the slope of a is defined to be
+|a|/[b], where the sign is positive if and only if @ isin X7 U X v.
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Lemma 6.7. For a generic action a of slope m, we have fi(a) = (z : y : z),

where

im-1) ifaeX;s
11-31) faeXmy
%(—m —-1) fac€ X
11+ feeXmr

8 <

Proof. If @ € X, then |a] > |b| > 0, and if |b| > 0, the translation
directions for @ and b agree on their overlap (which is an arc since « is
generic). Thus by Lemma 6.5, |ab| — |ab~!| = 2|b|, so

y la| — (0] la| — 18] _ 1
il et e YR AU
Computations in the other quadrants are similar. O

By Propositions 4.3 and 5.3, the actions with |aba=167!| = 0 are deter-
mined by the slope m. Thus Lemma 6.7 shows that f; is injective on this
set and maps it to the boundary of the diamond

D={(e:y:1):]z[+|y] =1}

By Proposition 4.3, every action on a given spike has the same (rational)
slope and distinct spikes have distinct slopes. Therefore, Lemma 6.7 also
shows that distinct spikes have disjoint images under f;. We calculate the
image explicitly below.

Lemma 6.8. The spike of slope m = p/q, (p,q) = 1, is mapped by f1 to
the segment from (2¢:p—q:p+qg+2)to(2¢:p—q:p+q).

Proof. Again, we give the computation for a spike in X 1, where |a| > |b] >
0 and the translation directions of a and b agree if b is hyperbolic.
Normalize so that the quotient graph of an action on the spike has length
one (which doesn’t change the point in projective space). Then |a| and |3
are integers, and are relatively prime since {a,b} is a basis for F;. By
Lemma 6.7, we have fi(a) = (z:y: 2), with
% lal =10 _ 1, (r—2q)

op 2
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Since p and ¢ are also relatively prime, this implies |b] = ¢ and |a| = p.
Now recall that, in any action, the commutator of any basis is conjugate
to aba~1b~! or its inverse, so has the same length. At the tip of the spike,
the commutator has length zero, and at the head, the commutator has
length 2. Thus |a| = p, |b| = ¢, |ab] — |ab]™! = 2¢, and 0 < |aba~1b671| < 2.
This gives the lemma for spikes in X, and the other cases are similar. O

The vertices of a closed tile are heads of spikes with slopes p/g, r/s,
and (p + q)/(r + s) where ps — gr = 1. This allows us to compute the
image of each of these 2-simplices, giving the following simple geometric
construction.

Lemma 6.9. Suppose that the spikes of slopes p/q and /s, with ps—qr =
1, are both contained in one of the sets —)?I, _X-II, j(—_r_rj, or X1v. Consider
the two diagonal lines joining the image under f; of the head of one spike
to the image of the tip of the other. Then f1 maps the head of the spike of
slope (p + q)/(r + s) to the point of intersection of these lines. ]

This construction is illustrated in Figure 20.

P .
q spike

spike

(0:0:1)

Figure 20

Let Y denote **~ =nhspace of X consisting of actions for which no pair
of basis elements has disjoint characteristic sets. This is the complement of
the open fins, free edges and peaks.
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Proposition 6.10. The map fi restricted to Y is a homeomorphism onto
the diamond D = {(z : y : 1): |z| + |y| = 1}.

Proof. We first prove injectivity. Inductively define the level of a closed
tile as follows. The two special tiles have level 0. If a tile has an edge in
common with a tile of level n and is not of level less than or equal to n
then we define it to have level n+ 1. Define the level of a closed spike to be
the minimum level of the tiles with which it has a common vertex. Let L,
denote the union of the tiles and spikes of level less than or equal to n. We
show by induction on n that the restriction of f; to L, is a homeomorphism
onto its image. For n = 0 this follows from Lemma 6.2. The induction step
follows from the geometric construction given in Lemma 6.9; the image of
each tile of level n meets f1(Ly) in one edge and the complement of this
edge is disjoint from the images of the other tiles of level n. Each tile of level
n > 0 meets exactly one spike of level n in one vertex and the construction
in Lemma 6.9 shows that the image of this spike is disjoint from the images
of the other tiles. Since we have seen that f; is injective on spikes, this
shows that fi is injective on Y.

To prove that fi maps Y onto the diamond, consider a ray emanating
from the origin in the plane {((z : y : 1)}. Let P be the last point on this
ray which is contained in f; (?) Suppose that P is not on the boundary
of D. Since the image of a spike is contained in a ray from the origin, P
cannot be in the image of a spike. Thus it is the image of a non-vertex
point in the boundary of a closed tile. But this tile adjoins another tile
whose image, by the construction in Lemma 6.9, covers points further out
along the ray. This contradiction shows that P is on the boundary of D
and that fi(Y) = D. 0

A picture of f;(Y) appears as Figure 21 at the end of the paper. It is not
difficult to give a complete description of the induced action of Out(F3)
on f1(Y). The group Out(F}) is generated by the involutions 7, and
together with the outer automorphism 7 given by

n(a) =ab  w(b) =b.

We have already described the action of the involutions. For a generic tile
t, the action of 7 on f1(t) is by the unique projective linear transformation
which fixes the origin and maps f1(¢) to fi(n(¢)). The action on the images
of the special tiles can be computed directly.
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Next we will extend f; to an embedding f: X — P3. Since this involves
extending f1 over the closed fins, it will be convenient to have a way of
indexing the fins. Since the actions in the interior of a fin have quotients
which are barbells (see Figure 11), the two circles of the barbell determine
a conjugacy class of unordered bases of F; up to an equivalence relation in
which the conjugacy class of {u, v} is equivalent to that of {u,v™'}. Denote
the equivalence class of the basis {u,v} by (u,v). The fins are indexed by
the classes (u,v) where u and v are a basis of F3.

Given a basis {u, v} of F; and an action a of F; on an R-tree T', we define

b(u, (@) = max(fuv|, [uv™[) — u| - [v].

Lemma 6.11. Let o, T and b, ) be as above. Then b(u,,,).(a) is equal to
the distance between the characteristic sets for u and for v. 0

It is an easy consequence of the lemma that b, ,) is non-zero only on the
fin which corresponds to actions described by the barbell with labels
and “v”, and is zero on the actions corresponding to the edge along which

(C ”

this fin meets Y. In particular, a fin minus its intersection with Y is an
open set in X.
Define, for any action a corresponding to a point of X,

b(u »)(@)
w@)= 2 Fuy+ i)’

where for g € F3, £(g) denotes the length of a cyclic reduced word in a and
b representing the conjugacy class of g. We now define a map f2: X — P?

by
fa(a) = (lab] — |ad™"| : |a| — [] : |a] + |B] + |aba™"b7"] : w(a)).

Since each coordinate of f; transforms linearly under scaling of the metric
this gives a well-defined map into projective space. This will be a first
approximation to our embedding of X in P32, but it is not quite injective and
must be perturbed slightly to construct the embedding. Before constructing
the embedding we pause to observe:
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Lemma 6.12. The map f: X — P2 is continuous.

Proof. It suffices to check that

w(a)
lal + [b] + |aba="b~1|

is continuous on X. This function is an infinite sum of functions such that
at most one is non-zero at any point of X. Thus in order to force the partial
sums to converge uniformly it suffices to make the maximum values of these
terms converge to zero. The denominators £(u) + £(v) were chosen, more

or less arbitrarily, to guarantee this. O

The image of f, is contained in the affine space {(z : y : 1 : w)} C P3.

An easy computation gives

Lemma 6.13. Consider the fin which contains the heads of slopes p/q and
r/s with ps — gr = +1. Assume that p/q and r/s are contained in [1, 0],
pt+qg<r+s,and {p/q,r/s} # {1,00}. Then the fin maps under f, to the
triangle with vertices (2¢:p—q:p+q+2:0),(2s:r—s:7r+s+2:0),
and(2q:p—-q:p+q+2:m:}_m). | O

Note that the fourth coordinate of f; is invariant under the involutions
71 and 72. Thus by symmetry the lemma above describes the images of all
of the fins which do not meet the special tiles.

The lemma shows that the image of each fin which does not meet a special
tile is orthogonal to the plane {(z : y : 1 : 0)} which contains the image of
Y under f,. However, it also shows that one edge of such a fin is mapped
to a vertical line segment, and hence that there are infinitely many fins
whose images all meet a vertical line segment emanating from the image of
a head. Thus f; is not injective on these edges.

In order to construct our embedding we have to correct this defect in
f2. The map f2 also has a second defect: the four fins corresponding
to the classes (a, ab), (a,ab™?), (b, ab), and (b,ab™') do not map to vertical
triangles. This is easily corrected by redefining the first coordinate on these
four fins to be 2min(|a|, |5]). This agrees with the original coordinate on
the edges where these fins meet Y, so the modified map is continuous. Let
f3 be the map obtained from f2 by this modification.

The map f3 still has the first defect. To correct this, we perturb the
map slightly on the fins as follows. For our embedding f we will use a map
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which agrees with f3 on Y and maps each fin to a vertical triangle by a
projective linear map. However, if P is the peak of a fin which is mapped
by f3 to a point above a head, then we define f so that f(P) is displaced
horizontally from f3(P) by an amount ep and lies above an interior point
of the image of the edge where the fin meets Y. This makes f injective. As
long as the displacements ep converge to 0, the map f will be continuous.

Pictures of the image of f, drawn using Mathematica™ and some com-
puter programs written by Curt McMullen, are shown in Figure 22.

Figure 21. f1(Y)

Figure 22. f(X)
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