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0. Introduction

An R-tree is a non-empty metric space in which any two points are joined by a
unique arc, and in which every arc is isometric to a closed interval in the real line.
Group actions on U -trees arise naturally from groups of isometries of hyperbolic
space, and have had significant application in the study of hyperbolic manifolds.
In [6], [11] and [13] it is shown that the space of conjugacy classes of
representations of a finitely generated group G into SO(n, 1) has a natural
compactification whose ideal points are isomorphism classes of actions of G on
U-trees. From a different point of view, both Gromov and Thurston [17] have
constructed U-trees as limits of sequences of hyperbolic spaces, scaled so that the
curvature goes to —«>. These theorems suggest that the study of group actions on
U-trees can be viewed as a natural extension of representation theory; we take
this point of view here.

There are two features of group actions on U -trees which are addressed in this
paper. The first is that isometries of U -trees behave in many ways like isometries
of hyperbolic space, and that groups of isometries of U-trees resemble subgroups
of SO(n, 1). The second is that, for a fixed finitely generated group G, the space
of all actions of G on U-trees has strong compactness properties.

Actions on simplicial trees are useful in combinatorial group theory, as was
made clear in Serre's book [16]. Actions on U -trees have applications in this area
as well. For example, it was shown in [7] that the space of all free properly
discontinuous actions of a free group on U-trees is a contractible space, the
analogue for free groups of the Teichmuller space associated to a closed surface
group. It follows from results proved here that this space has a compactification in
which the ideal points are actions on U -trees for which stabilizers of non-
degenerate arcs are cyclic. Thus the compactification is the strict analogue of
Thurston's compactification of Teichmuller space as described in [13]. We hope
that this compact space will be useful in studying outer automorphisms of free
groups in the same way that Thurston's compactification of Teichmuller space
was useful in studying automorphisms of surfaces.

The definition of an R-tree was first given by Tits [18], who introduced them as
generalizations of local Bruhat-Tits buildings for rank-1 groups and showed that
certain groups of higher rank cannot act on U-trees without fixed points. (Tits
only considered U-trees which are complete as metric spaces. The assumption of
completeness is usually irrelevant. However, it does make a difference in the case
of an infinitely generated group acting so that every element has a fixed point.) It
was observed in [18] that U -trees behave like hyperbolic spaces and that the space
of ends of an R-tree is analogous to the sphere at infinity of hyperbolic space.
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In [5] Chiswell studied actions of a group on trees in terms of associated based
length functions on the group. If XxG-^X is an action of a group G by
isometries of a metric space X, then a based length function Lp associated to a
base point p e X is defined by Lp{g) = dist(/?, p • g). Chiswell gave an axiomatic
characterization of the (integer-valued) based length functions associated to
actions of G on simplicial trees in terms of axioms which had been studied earlier
by Lyndon [10]. For each function L: G—>U satisfying these axioms, Chiswell
constructed an action of G on a contractible metric space T and a point p e T so
that L = Lp. He viewed the space T as being a generalized simplicial tree. Later,
Alperin and Moss [2] and, independently, Imrich [9], showed that T is an IR-tree
in our sense. We will make use of these results in several of our proofs.

We will study the actions of a group on U -trees in terms of their associated
translation length functions. These are analogues of characters of representations.
If G acts by isometries on hyperbolic space then the length ||g|| of an element g of
G is zero if g has no axis (i.e. if g is a parabolic isometry) and otherwise is the
distance of translation of g along its axis in hyperbolic space. Notice that if G is
the fundamental group of a closed hyperbolic manifold M, then \\g\\ is the length
of the closed geodesic in M representing the conjugacy class of g. If a group G
acts by isometries on an IR-tree T then, by analogy, we define the translation
length of g e G to be

||s|| = mfdist(*,*-g).

Let Q denote the set of conjugacy classes in G. Since translation length
functions are constant on conjugacy classes, we may regard them as points of the
(usually infinite-dimensional) Euclidean space UQ whose coordinates are indexed
by the elements of Q. The subspace LF(G)<=IRQ of all translation length
functions of actions of G on 1R-trees is an analogue of the character variety of a
group.

Any action of G on an IR-tree whose translation length function is non-trivial
determines a point in the projective space P" which is the quotient of IRn - {0}
by the action of the group of homotheties. Of course, an action of G on
hyperbolic space with a non-trivial length function also corresponds to a point in
Pn. Since scaling the metric has no effect on the image in Pfi, this is the natural
ambient space in which to view actions on hyperbolic space converging to actions
on U-trees. In fact, it is in this space that compactification theorems of [17], [13],
and [11] take place. The compactness results in this paper concern the image,
PLF(G), of LF(G) D (Ua - {0}) in Pfi. (In [18] and [13] it is shown that a finitely
generated group of isometries of an IR-tree has a common fixed point if and only
if its translation length function is trivial. Hence, a fixed-point-free action of a
finitely generated group determines a point of Pn.)

In the first section we list some of the most basic properties of isometries of
U-trees; our discussion overlaps substantially with that in [18] as well as that
in [13].

In §§ 2 and 3 we develop the analogy between actions on 1R-trees and linear
representations. We will restrict attention to the case of SO(2,1) where the
analogy is clearest. Recall that a linear representation is reducible if it has a
non-trivial invariant subspace, and that it is semi-simple (or completely reducible)
if every invariant subspace has an invariant complement. The connected
component of the identity in SO(2,1) is the group, SO0(2,1), of orientation-
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preserving isometries of the hyperbolic plane. A representation of G into
SO0(2,1) is reducible if and only if the induced action of G on the hyperbolic
plane has

(i) a fixed point in the plane, or

(ii) an invariant line in the plane, or

(iii) a fixed point in the circle at infinity.

Such a representation is semi-simple in Cases (i) and (ii). (Of course, the
irreducible representations are also semi-simple.)

The space at infinity for an R-tree T, which is called its space of ends, is
defined to be the limit of the inverse system JZQ{T — B) where B ranges over all
closed and bounded sets in T. (Clearly, automorphisms of T extend continuously
to the space of ends of T.) By analogy with the hyperbolic case, we say that an
action of a group G on an R-tree T is reducible if one of the following holds:

(i) every element of G fixes a point of T; or
(ii) there is a line in T which is invariant under the action of G; or
(iii) there is an end of T which is fixed by G.

An action is semi-simple if it is irreducible, if it has a fixed point, or if it is of Type
(ii) above. An action of Type (ii) which does not preserve the orientation on an
invariant line will be called dihedral. Actions of Type (ii) which preserve the
orientation on an invariant line will be called shifts. (Note that for actions on
hyperbolic space, if every element of the group has a fixed point then the whole
group has one as well. This is not necessarily true for actions on U-trees if the
group in question is not finitely generated.)

If G is irreducibly represented in SO(2,1) then it is an easy exercise to show
that G contains a free group of rank 2. The analogue for U -trees is proved in § 2
(see Theorem 2.7):

THEOREM. / / G acts irreducibly on an U-tree then G contains a free group of
rank 2.

Every character of a non-semi-simple representation of a group into SO(2,1)
equals the character of some semi-simple (even diagonalizable) representation
into SO(2,1). The same is true for actions on U-trees (see Corollary 2.4).

THEOREM. The translation length function of a non-semi-simple action on an
U-tree equals that of an action on R by translations.

Recall that a semi-simple representation of G into SO(2,1) is determined up to
conjugacy by its character. In the third section we shall show that semi-simple
actions of G on U -trees are essentially determined by their translation length
functions. If the tree contains a proper subtree which is invariant under the action
of G, then the translation length function associated to the action on the subtree
is the same as that associated to the original action. Thus, we consider actions
which are minimal in the sense that the tree contains no proper invariant subtree.
(In Proposition 3.1 we prove that minimal invariant subtrees always exist for
semi-simple actions.) Our first main result is the following uniqueness theorem
(Theorem 3.7).
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THEOREM. Suppose that ^ x G - * ? ! and T2 x G—> T2 are two minimal semi-
simple actions of a group G on U-trees with the same translation length function.
Then there exists an equivariant isometry from Tx to T2. If either action is not a
shift then the equivariant isometry is unique.

Analogously to the case of representations into SO(2,1), this result is not true
for non-semi-simple actions.

The theory of non-semi-simple actions on U -trees diverges somewhat from that
of non-semi-simple representations into SO(2,1). At the end of § 3 we give some
examples to illustrate these differences.

In the fourth section we turn from the study of a single action to that of the
space of all actions of a given group G on IR-trees. Recall that PLF(G) <= Pn is the
subspace whose elements are projectivized translation length functions of
fixed-point-free actions of G on (R-trees. Our second main result (Theorem 4.5)
is:

THEOREM. If G is a finitely generated group then the space PLF(G) is a compact
subset of P°.

If G acts on an IR-tree, we say that a subgroup H a G is an arc stabilizer if H is
the maximal subgroup of G stabilizing some non-degenerate arc in the IR-tree. In
the study of free groups or fundamental groups of surfaces, the actions which
arise geometrically either are free or have abelian arc stabilizers. In general the
free actions do not form a closed set. For example, measured laminations on a
surface determine a compact space of actions of its fundamental group on
IR-trees. A dense subset consists of free actions, but there are some for which the
stabilizer of a point contains a non-abelian free subgroup. Nevertheless, for all of
these actions the stabilizer of any non-degenerate arc is cyclic (cf. [15]). Thus, it is
natural to ask in general whether there is a compact space of actions for which the
arc stabilizers are 'small'. We define SLF(G) to be the subspace of PLF(G) which
consists of all projective classes of translation length functions of actions for
which no arc stabilizer contains a free subgroup of rank 2. In § 5 we show that this
subspace is closed, giving us the following (Theorem 5.3):

THEOREM. If G is a finitely generated group then the space SLF(G) is a compact
subset of Pn.

In proving Theorem 4.5 we consider the space XVLF(G) of 'pseudo-length
functions' on G. This space is defined by piecewise linear inequalities and
contains PLF(G). The proof of Theorem 4.5 uses a number of properties of
pseudo-length functions which follow formally from the defining inequalities;
these are proved in § 6.

We learned late in the course of this work that Alperin and Bass were working
independently on many of the same questions. There is substantial overlap
between their work [1] and the work in §§ 1, 2, 3, 4, and 6 of this paper. One
difference is that while we restrict ourselves to IR -trees they work with A-trees for
a general ordered abelian group A. We thank Ken Brown for pointing out to us
Tits's paper [18] and for several other helpful remarks.
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We end this section by listing some questions that we find interesting.

(1) Is every pseudo-length function a translation length function?t If so, this
would give a direct method of constructing the actions on U -trees which
compactify the character variety.

(2) Are the simplicial actions dense in PLF(G) or in SLF(G)? If so, this would
give a structure theorem for those groups whose space of conjugacy classes of
discrete and faithful representations into SO(n, 1) is non-compact. Such groups
would decompose non-trivially as free products with amalgamation, or as
HNN-extensions, along virtually abelian subgroups.

(3) What is the topology of PLF(G) and SLF(G)? For example, when are
these spaces infinite-dimensional?

(4) Which finitely generated groups act freely on U -trees? Peter Shalen asks
whether such a group must be a free product of abelian groups and surface
groups.

1. Elements of the geometry of U-trees

In this section we review a number of properties of isometries of U-trees. At
the end of this section we list five 'axioms' which describe how translation lengths
behave under the operations in the group of isometries of an IR-tree. A natural
question (which we cannot answer) is whether these axioms actually characterize
translation length functions, or indeed whether it is possible to characterize
translation length function in terms of axioms, such as these, which deal only with
single elements or pairs of elements.

Recall that in an IR-tree any two points are joined by a unique embedded arc;
this arc will be called a geodesic. It is also part of the definition that, with the
induced metric, each geodesic in an IR-tree is isometric to an interval in the real
line. Whenever convenient we will assume that a geodesic is parametrized by
arc-length (i.e. by distance from one of its endpoints). If a is an oriented geodesic
then the reverse of a will be denoted a.

If two geodesies have the same initial endpoint then their intersection is a
geodesic. We define a direction at a point p of an IR-tree to be an equivalence
class of geodesies with initial point p under the following relation: a ~ a' if a
meets a' in a geodesic of positive length. If a and j8 are two geodesies in an
IR-tree and the initial point of a equals the terminal point of /?, then the product
path a(3 is a geodesic if and only if the direction of a is distinct from the direction
of/3.

1.1. If Tx and T2 are disjoint non-empty closed subtrees of T then there is a
unique shortest geodesic having its initial point in Tx and its terminal point in T2.

Proof It suffices to show that there is a unique geodesic such that its initial
point is in Tu its terminal point is in T2, and its interior is disjoint from Tx U T2.
To see that an arc with these properties exists, consider a geodesic y joining a
point of r, to a point of T2. The closure in y of y — (Tx U T2) has the desired
properties. Suppose that a and /3 were two distinct such arcs. Without loss of
generality we may assume that the initial points of a and j3 are distinct. Let y be a
geodesic from the initial point of a to that of /?. Then y is contained in 7i; since <x

f Added in proof: William Parry has answered this question in the affirmative.



576 MARC CULLER AND JOHN W. MORGAN

and j3 meet Tx in points, the arc ay ft is a geodesic. This is impossible since it has
endpoints in T2 but is not contained in T2.

The geodesic in 1.1 will be called the spanning geodesic from Tx to T2. If Tx and
T2 are closed subtrees which meet in a point then we will also call that point the
spanning geodesic from Tx to T2.

1.2. / / 7;, T2, and T3 are closed subtrees of T with TXC\T3 and T2HT3 both
non-empty but with Tx H T2 H T3 = 0 then Tx H T2 = 0 .

Proof. If there is a non-degenerate arc in T with one end point in Tx and the
other in T2 and which is otherwise disjoint from Tx U T2 then TXC\T2 = 0 . The
spanning geodesic between Tx fl T3 and T2 D T3 in T3 is such an arc.

For each isometry g of T we define the characteristic set of g to be the set
Cg = {xeT\ dist(x,x-g) = \\g\\}.

1.3. The characteristic set Cg is a closed non-empty subtree of T, which is
invariant under the action of g. In addition,

(i) if \\g\\ = 0 then Cg is the fixed set of g;
(ii) if \\g\\ > 0 then Cg is isometric to the real line and the action of g on Cg is

translation by \\g\\; and

(iii) for any peT, we have dist(/?, p • g) = ||g|| + 2 dist(/?, Cg).

Proof It is clear from the definition that Cg is invariant under the action of g.

First assume that g has a fixed point. Clearly, in this case, \\g\\ = 0 and Cg is the
fixed set of g. In particular, it is closed and non-empty. If an isometry of T fixes
both endpoints of a geodesic then it must fix the entire geodesic. Thus Cg is
connected and hence is a subtree of T. Using 1.1, we can easily see that (iii) holds
in this case.

Next suppose that g has no fixed point. Let x be any point of T and let oc be the
arc from x to x • g. An easy geometric argument shows that oc D <x • g and
a fl a • g'1 are subarcs of a which do not contain its midpoint. Let /? be the
spanning arc from a • g~x to a • g. Then /? is a subarc of oc which has positive
length and meets each of /? • g and /3 • g'1 exactly in one endpoint. This implies
that the union A of the arcs /3 • gn for all n e Z is isometric to U and that g acts on
A by translation with /J as fundamental domain. If p is a point of T then it is
easily shown that

dist(p, p-g) = length /S + 2 dist(p, A),

from which it follows that \\g\\ = length j3 > 0 and A = Cg.

The proof of 1.3 shows that if ||g|| = 0 then g has a fixed point. It also follows
from this argument that, for any non-zero integer n, Cg c Cgn, with equality if g
has no fixed point.

The arguments in the proof of 1.3 are given in more detail, and in greater
generality, in [13].
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1.4. DEFINITION. If g is an isometry of T with no fixed point then g is
hyperbolic, otherwise g is elliptic. If g is hyperbolic then the invariant line Cg is
called the axis of g.

The action of a hyperbolic element g on its axis Cg induces an orientation of Cg

with respect to which g translates in the positive direction. A point p is contained
in the axis of g if and only if the geodesic a from p to p . g has the property that
the image under g of the direction of a at p is distinct from the direction of a at
P-g-

1.5. Let g and h be isometries of T. If Cg n Ch is empty, or if it is a single point
and g and h are hyperbolic, then

\\gh\\ = Wgh-'W = \\g\\ + \\h\\ + 2dist(C,, Ch).

Proof Let a be the spanning geodesic from Cg to Ch. Let p and q be the
respective initial and terminal points of a. Let /? and y be the geodesies from
p -g~x to p and from q to q • h respectively. (In the case when g and h have

P'g~x p

-Ch-g
- i

a g

ah

Cgh

q qh "

FIG. 1

disjoint axes, these geodesies are shown in Fig. 1.) The path w = ^ay(a • h) is a
geodesic since |8cCg, a meets Cg U Ch only at its endpoints, y c Q , and a • h
meets Ch only at its initial point. Moreover, /? • ghczCg- h while a • h meets
Cg • h only at its terminal point. Thus a) meets its translate under gh in a single
point. This proves that a> a Cgh and that

\\gh\\ = lengthO) = length(/3) + length(y) + 2 length(o-)

= ||*|| + P| |+2dist(Cg,C*).

Applying this same argument with h replaced by h~l completes the proof.

An elaboration of the argument in 1.5 also shows:

1.6. Under the hypothesis of 1.5, if g and h are hyperbolic isometries then
Cgh fl Chg equals the spanning geodesic from Cg to Ch.

1.7. / / To is a closed subtree of T disjoint from Cg then TonTo- g = 0.

Proof Let oc be the spanning arc from To to Cg. Then a • g is the spanning arc
from To • g to Cg. If g is hyperbolic then these arcs are disjoint. Otherwise they
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meet in a single point; namely the endpoint which is contained in Cg. But if there
exists p e To fl To • g, then the spanning arc from p to Cg would contain both a and
a • *. This would imply that a meets a • g in an arc of positive length, a
contradiction.

1.8. Let g and h be hyperbolic isometries of T. Then CgC\Chi
z0 if and only if

max(||*A||,

Moreover, \\gh\\ > \\gh 1\\ if and only if Cg D Ch contains a non-degenerate arc
and the orientations induced by g on Cg and by h on Ch agree on CgC\Ch.

Proof It follows from 1.5 that if CgHCh=0 then \\gh\\ = Wgh^W *
\\g\\ + \\h\\. We therefore may assume that Cg f l C ^ 0 .

First suppose that Cg meets Ch in a segment of positive length and that the
induced orientations agree on the overlap. Let p be an interior point of the
intersection. Consider the geodesic a from p • g~l to p • h. The direction of a
equals that of the positive ray on Cg. It is mapped by gh to the direction of the
positive ray on Ch emanating from p • h. However, the direction of a equals that
of the negative ray on Ch emanating from p • h. This shows that a is a
fundamental domain for the action of gh on its axis. Therefore, \\gh\\ equals the
length of a, which is ||g|| + \\h\\. Also, we have

\\gh-1\\^dist(p-g-1,P'h)<\\g\\

This proves the result in the case when Cg C\ Ch contains a non-degenerate arc.
Now suppose that Cg n Ch is a single point. Let p be this point. Let a be

defined as above. The direction of oc. gh points out of Ch, but that of a points
along Ch. Thus oc is a fundamental domain for the action of gh on its axis in this
case as well. This shows that \\gh\\ = \\g\\ + \\h\\. Similarly, Wgh^W = \\g\\ +

1.9. Let g and h be isometries of T with
max(||g/i||, 11*01)̂ 11*11

Then

Proof Let p be a point of Cgr\Ch. Then

\\gh\\ *= dist(p • g-\ p-h)^ dist(/7 • g, p) + dist(/7, p • h)

A similar calculation applies to

1.10. Suppose that g and h are isometries of T and that Cg C\ Ch contains an arc
J of length A 251|*|| + p ||. / / * and h are both hyperbolic then make the further
assumption that the orientations induced by g and h on their axes agree on the
overlap. Then ghg~lh~l fixes a subarc of J of length A - ||*|| - \\h\\. (If
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A = ||g|| + \\h\\ then this statement is interpreted to mean that ghg~lh~l fixes a
point of J.)

Proof. The result is immediate from the description in 1.3 of the action of an
isometry on its characteristic set.

1.11. We summarize this section by listing some fundamental properties of
translation length functions which are all easy consequences of the facts proved
above. We assume here that G is a group of isometries of an IR-tree T and that
|| || denotes its translation length function.

I. | | l | |=0.

II. \\g\\-Wg-'W for all geG.
III. \\g\\ = \\hgh-1\\ for all g, heG.
IV. For all g,heG, either ||gA|| = \\gh-x\\ or max(||g/i||, H g O l ) ^ llgll +
V. For all g,heG such that \\h\\ > 0 and ||g|| > 0, either

\\gh\\ = \\gh-1\\> \\g\\ +

or

max(||*A|l, 11*01)= 11*11

2. Actions on U-trees with non-trivial translation length function

Throughout this section we shall be considering actions on U -trees whose
associated translation length functions are not identically zero. These actions
naturally fall into three classes: irreducible, dihedral, and those with a fixed end.
Of course, all non-semi-simple actions are of the last type, and the semi-simple
actions of the last type are shifts. In this section we characterize the three types of
actions, both geometrically and in terms of their translation length functions.

By a ray in an IR-tree we mean the image of an isometric embedding of the ray
[0, °°). If p is the image of 0 under such an embedding then the ray will be said to
emanate from p. Recall that the space of ends of an IR-tree T is the limit of the
inverse system JZO(T — B) where B ranges over the closed and bounded subsets of
T. Let p be a fixed point of T. For every point of the limit there exist a ray
emanating from p, and a cofinal sequence of components of complements of
closed and bounded sets representing the limit point, such that every set in the
sequence meets the ray. There is only one such ray for each end. Thus the ends of
T correspond one-to-one with the rays in T which emanate from the point p.
Given two distinct ends of T, the corresponding rays will meet in an interval with
p as ah endpoint. The union of these rays minus the interior of their intersection
will be a line in the tree. Conversely, given any line in an IR-tree, the two
oppositely oriented rays emanating from a point in the line determine two ends of
the tree. This pair of ends does not depend on the choice of the point; we will say
in this situation that the line joins the pair of ends of the tree. It is easy to see that
there is only one line joining each pair of ends.

We begin by giving a geometric criterion for reducibility.

2.1. LEMMA. Let TxG^>T be an action. Suppose that g is a hyperbolic
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element of G, and suppose that for all hyperbolic elements heG the intersection
Cg fl Ch is non-empty. Then the action is reducible.

Proof. Each hyperbolic element h fixes exactly two ends of T, namely those
determined by the two ends of its axis Ch. Let S be the subset of all ends which
are fixed by every hyperbolic element of G. Clearly, S is invariant under G and
the cardinality of S is at most 2. If the cardinality of 5 is 2, then the line between
the two ends contained in S is invariant under G; hence the action is reducible.
By definition, if S consists of a single point, then the action is reducible. It
therefore suffices to prove that S # 0 .

We first show that if h e G is hyperbolic, then g and h fix a common end.
Suppose not; i.e. suppose that there is a hyperbolic element h of G such that
CgDCh is bounded. Then by 1.2, for all sufficiently large n we have Cg 0
Cg- h

n = 0 . This is equivalent to Cg D Ch-nghn = 0 , which contradicts our
hypothesis.

Since each hyperbolic element heG fixes an end in common with g, either
5 =£ 0 or there are two hyperbolic elements h and k of G which fix opposite ends
of Cg. Thus CgC\ChC\ Ck is bounded. Using 1.2 again, for some n we would have
Ck n Cs-nhgn = 0 . We may assume, without loss of generality, that the natural
orientations of Ch and Ck agree on the overlaps with the natural orientation of
Cg. Then the axis of the product k~1g~nh~1gn may be constructed as in the proof
of 1.5; this axis will meet Cg in the (bounded) spanning arc from Ck to Cg-nhgn,
contradicting our hypothesis. Therefore

2.2. THEOREM. Let T x G—»T be an action of a group G on an U-tree T whose
translation length function is non-trivial. Then the following are equivalent:

(i) the action has a fixed end;
(ii) for all elements g and h of G we have Cg fl Ch =£ 0 ;
(iii) for all elements g and h of G the intersection Cg C\ Ch is unbounded;

(iv) there is a ray R in T such that for each g eG the intersection RC\Cg

contains a subray of R.
Any semi-simple action with these properties is a shift.

Proof. Clearly, (iv) implies (iii) which implies (ii). Let us assume that (ii) holds
and prove (i). By Lemma 2.1, statement (ii) implies that the action is reducible.
Since the action has a non-trivial translation length function, it either has a fixed
end or is dihedral. Were it dihedral, there would be elements r and s in G acting
as reflections with distinct fixed points on the invariant line. By 1.2, we would
have Crf\Cs = 0 , contradicting (ii).

Now let us show that (i) implies (iv). Suppose that the action has a fixed end.
Let R be a ray going to a fixed end of T. Since the end is fixed, for each g eG the
intersection R OR • g contains a subray of R. This means, by 1.7, that Cg meets
every subray of R, and hence that R D Cg is a ray.

Clearly, the only semi-simple actions satisfying (i) are shifts.

2.3. COROLLARY. For an action of G on an U-tree with non-trivial translation
length function the following are equivalent:

(i) the action has a fixed end;
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(ii) the translation length function is given by \p(g)\ where p: G-*U is a
homomorphism;

(iii) for all g and h in G, \\[g, h]\\ = 0.

Proof. We first prove that (i) implies (ii). If the action has a fixed end, then
there is a ray R such that for each g e G the intersection Cg D R is unbounded.
Each geG translates RHR-g'1 along R, and ||g|| = dist(x, x - g) for any
x e R n R • g'1. We define p(g) = ±dist(x, x • g) for any x e R n R • g"1 where
the sign is ' + ' if g moves x towards the end of R, and is ' — ' in the opposite case.
Clearly, \p(g)\ = \\g\\. We claim that p is a homomorphism. Obviously, p(l) = 0
and pig'1) = -p(g)- Hence we need only show that p(gh) = p(g) + p(h). This is
immediate from a consideration of the action of gh on any

xeRHR -g~lnR -h~xg~x.

Clearly (ii) implies (iii). For the proof that (iii) implies (i), assume that
life* h]\\ = 0 f o r a11 8 a n d h i n G- T n i s means, by 1.5, that

0 * cg n c^-i!,-! = cg n (cg-.) • h~\

or equivalently, that Cg D Cg • /i =£0. By 1.7 this implies that Cg n C ^ 0 . Thus,
by 2.2 the action has a fixed end.

2.4. COROLLARY. 7Vie translation length function of a non-semi-simple action of
G equals that of a shift.

Now let us turn to dihedral actions.

2.5. THEOREM. For an action of G on an U-tree with non-trivial translation
length function the following are equivalent:

(i) the action is dihedral;
(ii) the translation length function is given by \\g\\ = N(p(g)) where

p: G-»Iso(lR) is a homomorphism whose image contains a reflection,
and N denotes the translation length function for the natural action of
Iso(R) on U;

(iii) the translation length function is non-trivial on some simple commutator in
G, yet it vanishes on all simple commutators of hyperbolic elements.

Proof. Suppose the action is dihedral. Then the translation length function of
the action is equal to that of the action restricted to an invariant line. Hence (ii)
holds.

Now suppose that (ii) holds; say that \\g\\ = N(p(g)) for some homomorphism
p: G-*Iso(R). Set Go = p~l(U) where U d s o ( R ) has been identified with the
subgroup of translations. Clearly all hyperbolic elements of G lie in Go. Since || ||
restricted to Go is given by the absolute value of a homomorphism to IR, it follows
from Corollary 2.3 that ||[g, /*]||=0 for all g,heG hyperbolic. There exists
geG- Go; necessarily p(g) is a reflection. Since the translation length function is
not identically zero, there is an element h e Go with \\h\\ =£0. Then \\[g, h]\\ =

Now suppose that (iii) holds. Since the commutator of any two hyperbolic
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elements has a fixed point, we can argue as in 2.3 to show that if g and h are
hyperbolic elements then Cgr\Ch^0. Thus, by Lemma 2.1, the action is
reducible. Since the translation length function does not vanish on the com-
mutator subgroup, by Corollary 2.3 the action does not have a fixed end. Since it
has a non-trivial translation length function, it must then be dihedral.

Now we turn to the study of irreducible actions.

2.6. LEMMA. Suppose that g and h are hyperbolic isometries of an R-tree T such
that Cg D Ch is either empty or has length less than min(||g||, \\h\\). Then g and h
generate a free group of rank 2 which acts freely and properly discontinuously
on T.

Proof. If Cg fl Ch =£ 0 , let H be the union of two intervals which are
fundamental domains for the actions of g and h on their respective axes and
which each contain Cg n Ch in their interiors. If CgC\Ch= 0, choose intervals on
Cg and Ch which are fundamental domains for the actions of g and h and so that
the union of their interiors with the spanning arc is connected, and set H equal to
this union.

H

FIG. 3

We claim that H meets H - g±l and H-h±l at its endpoints, and is disjoint
from H • w where w is any reduced word in g and h other than 1, g*1, or h±l. The
proof is by induction on the length of w; it is easy to check in the case where w
has length 1. For the inductive hypothesis we consider the four sets A, B, C, and
D which are the interiors of the components of T — Int(//) which respectively
contain the points p, q, p • g, and q • h. We show that if w is a reduced word in g
and h of length at least 1 then H • w is contained in one of A, B, C, or D
according to whether the last letter of w is g~l, h~l, g, or h. This clearly implies
our claim. Observe that B • g <= C, C • g c C , and D • gczC. Thus if the last letter
of w is g then w = vg where the last letter of v is not g"1. By induction
H -V czBUCUD. Thus H • w <= C. The cases where w ends in one of the other
three letters are handled in the same way.

Let S be the subtree of T which is the union of the images of H under the
action of (g,h). It is easily checked that (g, h) acts freely and properly
discontinuously on S with fundamental domain H. It follows immediately from
the previous paragraph that g and h generate a free group of rank 2.

2.7. THEOREM. Let T xG-*T be an action with non-trivial translation length
function. The following are equivalent:

(i) the action is irreducible;
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(ii) there are hyperbolic elements g and h in G with \\[g, h]\\ =£0;

(iii) there are hyperbolic elements g and h in G such that Cgr\Ch is an arc of
finite positive length;

(iv) G contains a free group of rank 2 which acts freely and properly
discontinuously on T.

Proof. That (i) implies (ii) is immediate from 2.3 and 2.5.
Suppose that there are hyperbolic elements g and hoiG with ||[g, h\\\ =£0. This

means by 1.10 that the intersection Cg D Ch is a bounded subset of T. If Cg and Ch

are disjoint axes then Cgh meets Cs in a finite arc. A fundamental domain for the
action of gh on its axis is shown in Fig. 4 (cf. 1.5).

FIG. 4

If Cg and Ch are axes which meet in a single point then we again have that Cgh

meets Cg in an arc of finite positive length. The axis of Cgh is shown in Fig. 5.

FIG. 5

Thus in all cases we can find hyperbolic elements whose axes intersect in a
non-degenerate interval of finite length. This shows that (ii) implies (iii).

Now let us suppose that g and h are hyperbolic elements whose axes intersect
in a non-degenerate interval of finite length. By taking powers we can assume
that ||g|| and \\h\\ are both longer than the length of the intersection CgC\Ch. By
Lemma 2.6, the subgroup (g, h) is a free group of rank 2 acting freely and
properly discontinuously on T.

Lastly we show that (iv) implies (i). Clearly if G contains a free group of rank 2
acting freely and properly discontinuously then there are hyperbolic elements g
and h in G with \\[g, h]\\ =£0. Thus by 2.3 the action has no fixed end, and by 2.5
the action is not dihedral. The only remaining possibility is that it is irreducible.

One consequence of these results is that the type of an action of G on an
K-tree with non-trivial translation length function is determined by its translation
length function according to the following scheme:

FIXED END <=> || || is trivial on [G, G],
DIHEDRAL *> . || || is non-trivial on [G, G] but \\[g, h]\\=0 for all

hyperbolic g and h,
IRREDUCIBLE <̂> \\[g, h]\\*0 for some hyperbolic elements g and h.
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3. Uniqueness results for semi-simple actions

In the previous section we showed that the three types of semi-simple actions
are distinguished by their translation length functions. Here we will extend these
results by showing that minimal semi-simple actions are completely determined
by their translation length functions. At the end of the section we discuss some
examples of non-semi-simple actions.

We begin with a result on the existence of minimal invariant subtrees. Recall
that if T x G —> T is an action and if To c T is a subtree invariant under G, then it
is a minimal invariant subtree provided that it contains no proper invariant
subtree.

3.1. PROPOSITION. / / G acts on an U-tree with a non-zero translation length
function then there exists a unique minimal invariant subtree.

Proof. Since the translation length function is non-zero, there exists a
hyperbolic element of G. Consider the union of the axes of all the hyperbolic
elements of G. Clearly this set is invariant, and, by the argument given in the
proof of 1.3, it is contained in any invariant non-empty subset of the tree. To
show that this set is the minimal invariant subtree we must show that it is
connected. But this follows immediately from the fact that if Cg and Ch are
disjoint axes then they both have non-empty intersection with the axis Cgh (cf. the
proof of 2.7).

It is shown in [18] and [13] that if G is finitely generated and acts on an (R-tree
so that every element of G has length 0, then G has a fixed point and hence has a
minimal invariant subtree. However, there are fixed-point-free actions of
non-finitely generated groups without minimal invariant subtrees. An example is
given at the end of the section (see Remark 3.10).

In proving that the translation length function of a minimal semi-simple action
determines the action, the reducible case is easily handled. In the irreducible case
the proofs depend on the existence of certain special pairs of hyperbolic
isometries.

3.2. DEFINITION. Let g and h be isometries of an R-tree T. We will say that g
and h are a good pair of isometries if the following conditions are satisfied:

(i) the elements g and h are hyperbolic;
(ii) the axes Cg and Ch meet in an arc of positive length;

(iii) the orientations on the axes Cg and Ch induced respectively by g and h
agree on the arc CgnCh;

(iv) the length of Cg C\ Ch is strictly less than min(||g||,

3.3. REMARK. Note that if g and h are hyperbolic isometries of an R-tree such
that Cg meets Ch in an arc of positive but finite length, then there exist integers
a > 0 and b such that ga and hb form a good pair of isometries. The sign of b is
chosen to ensure that the induced orientations agree. The magnitudes of a and b
are chosen so that ||ga|| and \\hb\\ are greater than the length of Cg n Ch =
cga n cht.
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3.4. LEMMA. Suppose that g and h are a good pair of isometries. Let A be the
length of the geodesic CgC\Ch. Then

(i)

(hi) Wghg-'h-'W = 2 ||g|| + 2 \\h\\ - 2A >0, and
(iv) the three axes Cg, Ch, and Cgh-\ meet in a single point.

Proof. Part (i) follows immediately from 1.8. For parts (ii), (iii), and (iv) we
will use the facts that fundamental domains for the actions oigh, gh'1, and hg on
their respective axes are as shown in Fig. 6. These fundamental domains can be
constructed as in 1.8.

FIG. 6

Parts (ii) and (iv) are immediate from the figure. For part (iii) note that
Cg fl Ch = Cgh D Chg. Thus gh and hg are also a good pair and their axes intersect
in an arc of length A. So by (ii) and (i),

\\ghg-lh-l\\ = ||gA|| + \\hg\\-2A = 2 \\g\\+2 \\h\\-2A.

3.5. REMARK. Suppose that g and h are hyperbolic elements with disjoint axes
or axes which meet in a single point. By inspection of the proof of 1.5, one checks
that the elements gh and g~1h~i either are a good pair or have axes which meet
in a single point. Furthermore, we have length(Cg/l C\ Cg-\h-\) = dist(Cg, Ch).
Thus, by 3.4 part (i) or 1.5, in these cases we have the following analogue of the
formula in (iii):

\\ghg-xh~x\\ =2 ||g|| +2 p | | +4dist(Cg, C ) .

Good pairs of isometries can be characterized in terms of lengths as follows.

3.6. LEMMA. TWO isometries g and h of an U-tree are a good pair if and only if

Proof. The two inequalities in the statement hold for a good pair of isometries
by Lemma 3.4 part (ii), since by the definition of a good pair 0 < A <
mm(llgll> IÎ  ID- To prove the converse, note first that the inequalities imply that
both g and h are hyperbolic. It then follows from 1.5 that the axes Cg and Ch have
non-empty intersection. By 1.8 they meet in a geodesic of positive length and the
orientations must agree on the overlap. Assume that min(||g||, \\h\\) is less than
or equal to the length of CgC\Ch. Let J be an arc in Cg f) Ch of length at least
min(||g||, \\h\\), and let p be the positive endpoint of the segment /. Consider the
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geodesic arcs from p to p - g~x and p -h~x. One of these geodesies must be
contained in the other. Thus, we have

This implies that

\\g\\ + 11*11 " IIS*" 1 ! ! ^ 11*11 + 11*11" 111*11" 11*111 = 2 m i n ( | | g | | , \\h\\),
which contradicts the second inequality in the hypothesis.

Both the uniqueness theorem below and the compactness theorems of §§ 4 and
5 depend heavily on work of Chiswell [5] and Alperin and Moss [2] or Imrich [9].
Chiswell considers real-valued functions L on a group G which satisfy the
following three axioms of Lyndon [10]:

( i)L(l) = 0;

(ii) L(^-1) = L(g)fora l lgeG;
(iii) C(g, h) > C{h, k) implies C(g, k) = C(h, k) for all g,h,ke G, where by

definition C(g, h) = \[L{g) + L(h) - L{hg-X)\.

It is easy to see that the based length function for any action of G on a based
IR-tree satisfies these axioms. Conversely, given a function L: G—»IR satisfying
the axioms, Chiswell constructs an action of G on a metric space T and a point
p eT such that the based length function Lp equals L. It is implicit from the
construction of T that if 7" x G-» T' is an action of G on an IR-tree and if there
exists p' eT' such that the based length function Lp< equals L then there is a
unique G-equivariant embedding of (T, p) into (T',p'). Moreover, by results of
Alperin and Moss [2] or Imrich [9], T itself is an IR-tree. Thus if the action on V
is minimal then (T, p) and (T',p') are uniquely G-equivariantly isometric.

3.7. THEOREM. Suppose that TiXG—^T^ and T2xG-*T2 are two minimal
semi-simple actions of a group G on U-trees with the same translation length
function. Then there exists an equivariant isometry from Tx to T2. If either action is
not a shift then the equivariant isometry is unique.

Proof. If the translation length function of a semi-simple action is identically
zero, then by definition the action has a fixed point. If such an action is minimal
then the [R-tree must be a point. The theorem is obvious in this case. Thus we can
assume that both of the length functions in question are non-zero.

We first consider the case where one of the actions is reducible. Since
reducibility can be detected from the translation length function, in this case both
actions are reducible. If a minimal semi-simple action is reducible and has a
non-trivial translation length function, then the tree is isometric to U. It is an easy
exercise to show that effective actions on U are determined by their translation
length function. Thus we must only show that the kernel of the action is
determined by the translation length function. To see this, observe that an
element g of G fixes the entire line if and only if \\g\\ = 0 and ||[g, ft]|| = 0 for all
hyperbolic elements h eG. (There must exist a hyperbolic element since the
action is minimal.) An equivariant isometry must take fixed points to fixed points;
hence if either action is not a shift then there is a unique equivariant isometry
from 7J to T2.
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We now assume that both actions are irreducible. We will show that there exist
points pi e Tt for / = 1, 2 which determine the same based length function on G.
The result will then follow from the work of Chiswell, Alperin and Moss, and
Imrich described above.

Since both actions are irreducible, by Theorem 2.7 and Remark 3.3 there exist
elements g and h of G which form a good pair of isometries of Tx. By Lemma 3.6
these elements are also a good pair of isometries of T2. By applying part (iv) of
Lemma 3.4, we see that for / = 1, 2 there is a unique point /?, of intersection of
the axes of g, h, and gh~x in 7). To complete the argument we need only exhibit a
common formula for the based length functions Lp. in terms of the translation
length function. We claim that for k e G and * = 1, 2,

LPi(k) = dist(p{, Pi • g)

= dist(cgnchncgh-x, cg-knch-kncgh-x • k)
= max(dist(C, £>)),

where the maximum is taken as C ranges over the three lines Cg, Ch, Cgh-\, and
as D ranges over the three lines Cg • k, Ch • k, and Cgh-\ • k. This is because no
geodesic starting at /?, can meet all three of the axes Cg, Ch, and Cgh-\ in
geodesies of positive length. Thus the geodesic from pt to pt • k must in fact be the
spanning geodesic from one of these three lines to one of the three images under
k. To obtain the formula note that by 1.5 and 1.8, if g and h are hyperbolic then
the distance between their axes is given by

dist(C,, C*) = imax(0, \\gh\\ - \\g\\ - \\h\\).

We have shown that the based length functions Lp. are completely determined by
the translation length function and hence are equal. Thus the trees 7] are
equivariantly isometric.

Since any equivariant isometry from Tx to T2 must send the axes to axes, it must
send px to p2- The uniqueness statement now follows immediately from the
results of Chiswell, Alperin and Moss, and Imrich.

Polycyclic groups, i.e. those having a normal series with cyclic quotients, can
act on hyperbolic space with no fixed point and no invariant line. For example, it
is easy to construct unipotent subgroups of SL^C) which are free abelian of rank
2 and act in this way. The next proposition shows that this is not true for actions
of such groups on IR-trees.

3.8. PROPOSITION. / / G has a subgroup of finite index which is polycyclic, then
any action of G on an U-tree has either a fixed point or a unique invariant line.

Proof We prove this result first for polycyclic groups by induction on the
length of the normal series. If the series has length 1, then the group is cyclic, and
the result follows from 1.3 and 1.7.

Now let us turn to the inductive step. Suppose that we have an extension

where the result holds for TV, and A is a cyclic group. Let T x G—> T be an action
of G. The action restricted to N has either a fixed point or a unique invariant line.
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Let CN denote the fixed subtree or the unique invariant line for N. Since N is
normal in G, we know that G acts on CN. If CN is a line, then it is the unique
invariant line for the action of G. If CN is the fixed subtree of N, then the action
of G on CN factors through an action of A on CN. Since the result holds for cyclic
groups, it holds for this action of G.

This completes the proof for polycyclic groups. Next suppose that G has a
subgroup of finite index which is of this type. There is a normal subgroup HcG
which is polycyclic and has finite index. For any action I x G ^ I w e know that
H has either a fixed point or a unique invariant line. Let CH be the fixed subtree
or the unique invariant line for H. It is invariant under G. Thus, if CH is the
unique invariant line for H, it is also an invariant line for the action of G. Since
hyperbolic isometries have infinite order, any finite group of isometries must
consist only of elliptic elements. It is shown in [13] and [18] that such a group has
a fixed point. Thus, if CH is the fixed subtree for H, then, since G/H is a finite
group, its action on CH has a fixed point. Consequently, G fixes a point of CH.

3.9. EXAMPLE. We give an explicit construction to illustrate the failure of
Theorem 3.7 for non-semi-simple actions. Also, this example contains a subaction
with trivial translation length function which has no minimal invariant subtree.

Let T be the rooted infinite tree in which each edge has two descendants. We
label the directions at any vertex of T, except the root, by 'a' (above), T (left),
and 'r' (right). The two directions at the root are labelled T and 'r'.

Consider U as a simplicial tree with vertices at the integer points. For each
integer n let Tn be a copy of T. Form a homogeneous simplicial tree B with
vertices of order 3 by joining the root of Tn to the integer point n by an edge.
Extend the labelling of the directions at vertices as indicated in Fig. 7.

Let g be the automorphism of B which shifts the line by one unit and maps Tn

to Tn+1 so as to preserve the labels. Let r be the automorphism of order 2 which
fixes (-oo, 0] U U«<o Tn and interchanges the two isomorphic subtrees To and
[1, oo) U U«>o Tn, preserving the labelling of directions at each vertex other than
0. Consider the group G of isometries of B generated by g and r. It is clear that G
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fixes the end of T corresponding to the ray ( - » , 0], and hence the action is
reducible. This action is easily seen to be transitive on edges and hence to be
minimal.

The translation length function for the action of G on B is, by 2.3, the absolute
value of a homomorphism of G to Z which sends g to 1 and r to 0 (the exponent
sum in g). Let K be the kernel of this homomorphism. We will show that K is an
infinite 2-group. This implies by 2.7, or by results in [18], that any action of G on
an R-tree is reducible.

Of course, the translation length function for the action of G on B is also a
translation length function for an action of G on U. Thus this example shows that
the semi-simplicity assumption is essential in 3.7.

CLAIM. Every element of K has order a power of 2, but K has infinite exponent.

Proof. Let k e K. It acts on B fixing some vertex v0 e B. If v is any vertex of B
then k sends the a-direction at v to the a-direction at v • k, and either preserves
or interchanges the 1- and r-labelling of directions at v. Let Bn(v0) denote the ball
of radius n centred at v0. We will show that for all n s= 0 the element k2" fixes
Bn(v0) point-wise. This is true for n = 0. Suppose by induction that h = k2" ' fixes
Bn-i(vo) point-wise. Then h2 fixes Bn-X(v^) point-wise and leaves invariant the
labelling at all vertices of Bn_x{v^). Hence it fixes Bn(v0). This completes the
induction.

Since the generators of G preserve the labelling at all but at most one vertex of
B, there are only finitely many vertices of B where k interchanges the 1- and
r-labels. Let us choose N sufficiently large so that all of these vertices are
contained in Z?,v-i(uo)- Clearly, k and all its powers leave BN-x{vQ) invariant, and
preserve the labelling of directions at any vertex of B outside of BN_X{VQ}. Thus,
k2" fixes the labellings of all directions at all vertices of B - BN_x{v^). It also fixes
BN(VO) point-wise and hence leaves invariant all directions at all vertices of
BN-I(VO)- Since k2" fixes a vertex of B and leaves invariant labellings at all
vertices of B, it is the identity. This proves that every k e K has order a power
of 2.

We prove by induction on n that there is an element hn of K fixing 0 e B which
preserves the labelling of directions outside the ball Bn_x centred at 0 and which
acts as a cycle of order 2" on the descendents of 0 at distance n. Clearly, the order
of such an hn is 2". We take hx to be r. Suppose we have already defined hn_x.
Let rrt_! be g~n+1rg"~l. It interchanges the descendents of exactly one vertex at
distance n — 1 from 0. Thus the element rn_xhn_x satisfies the properties required
oihn.

3.10. REMARK. For the above action the quotient BIG is a graph with one
vertex and one edge. By the Bass-Serre theory [16], such actions correspond
one-to-one with descriptions of G as an HNN-extension. In this case, conjugation
by the stable letter g gives an isomorphism from the base group to a proper
subgroup of itself. Suppose that we are given any HNN-decomposition of G of
this type, and consider the associated action of G on a simplicial tree T.
Examination of the Bass-Serre construction shows that when the extension is of
this type, the tree is not a line (since the inclusion is proper), and that the action
has a fixed end (namely the positive end of the axis of the stable letter). The
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action is also transitive on edges and hence gives a minimal reduction action on
an R-tree other than U. Moreover, we claim that the kernel H of the natural
homomorphism G-»Z acts on Twith no minimal invariant subtree.

To see this note that the action restricted to H has the following properties:

(1) each h eH has a fixed point in T;

(2) H fixes an end of T;

(3) n*e*c*=0.
For any action satisfying these three properties there is no minimal invariant

subtree. To see this choose a ray R = [0, <») in T going to an invariant end of T.
For each h eH and for each neM we know, by the argument in 2.2, that
Ch fl [n, °°) is non-empty. This means that En = U/ie// [n, °°) • h is a subtree of T.
Clearly each En is invariant under H, and En+1 is a proper subtree of En. Let
T c T be an invariant subtree, and let x e T. Let a e R be the closest point of R
to x. We claim that [a, » ) c T and hence that EnczT' for all n 5= a. If so, then T'
cannot be minimal.

Let b be a point of R farther from 0 than a. We shall show that b eT'. Since
DheHCh = 0> there is an h eH such that b • h±b. Let 5 be such that
R D R - h = [s, °°). Clearly, /? D Q = [s, °°). Along /? we have a < b < s, so that
the interval [s, x] contains b and thus the direction of [s, x] at 5 agrees with the
negative direction on R. This means that [s, x] D Ch = s. Hence [s, x] is contained
in the geodesic from x to x • h, as is b. Thus, b is contained in the invariant
subtree T'.

Ch

FIG. 8

3.11. REMARK. In Example 3.9, the group G is generated by two elements. We
do not know if it is finitely presented, though we suspect that it is not. It was
pointed out to us by Steve Gersten that there are finitely presented groups which
are HNN-extensions as above. One well-studied example is R. J. Thompson's
group, which has the following presentation (due to Freyd):

(xh i ̂ 0 | x~xXjXi = xj+1, 0^i<j).

It is shown in [4] that this realizes the group as a HNN-extension: the subgroup is
(XJ\ y 2=1) and the two inclusions are the identity and conjugation by x0. This
gives a minimal, fixed-point-free action of the group on a simplicial tree which is
not isometric to IR. In fact, this group has recently been shown to have no free
subgroups of rank 2 (see [3]). Thus it also admits no irreducible action on
IR-trees. A finite presentation of this group is given in [4] and is

(x> y\ y~lx~xyxy =x~2yx2, y~lx~2yx2y =x~2yx3).
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4. Compactness results

Throughout this section we fix a finitely generated group G. Since translation
length functions are constant on conjugacy classes in G, we can consider them as
points in Un, where Q is the set of conjugacy classes in G. We may then define
the subset PLF(G) of the projective space Pn consisting of all projective classes
of non-zero translation length functions. In order to study this space, we need to
introduce a closely related subspace of PQ. Define a pseudo-length function on a
group G to be a function || ||: G—•R2*0 satisfying Axioms I-V of 1.11. Since
pseudo-length functions are also constant on conjugacy classes, they too may be
regarded as points in RQ. The space of projective classes of non-trivial
pseudo-length functions will be denoted WLF(G). Clearly, PLF(G) c ^LF(G).
We begin by showing that lPLF(G) is a compact subset of PQ. Thus, if all
pseudo-length functions were translation length functions, the compactness result,
Theorem 4.5, would be immediate. Unfortunately, we do not know if this is the
case. We are, however, able to show that pseudo-length functions enjoy many of
the same properties that translation length functions do. A consequence of this is
the result that the space PLF(G) is a closed subset of WLF(G), and hence
compact. The proof of the closure of PLF(G) relies on a basic dichotomy,
Proposition 4.4, for pseudo-length functions. One consequence of this dichotomy
is that any reducible pseudo-length function is actually the translation length
function of a reducible action. (See 4.3 for the definition of reducible.) The proof
of Proposition 4.4 is rather technical. Out of consideration for the reader, we
have postponed it until § 6.

In order to prove the compactness of WLF(G) let us establish the following
notation. Fix a finite generating set {xl} x2,..., xn) of G and let F be the free
group on {xx, x2, ..., xn). We denote by (j> the natural surjection F—>G. Let D
denote the set of all elements of F which have the form

±i ±i ±i
'1 '2 " ' Ik >

where ix, i2, ••-, 4 are distinct integers chosen from { 1 , 2 , . . . , « } . If w is an
arbitrary element of F then we will denote by |w| the length of a cyclically
reduced word in {xx, x2, • •-, xn} which represents a conjugate of w. We will abuse
notation in the usual way by identifying elements of F with reduced words in the
generators. If y e G then \y\ will denote the minimum of |w| over all w e F with
(f>(w) = y .

We first show that WLF(G) is the image of a bounded subset of Ua. The proof
is based on the following.

4.1. PROPOSITION. In the above notation, if \\ ||: G—>U is any pseudo-length
function then, for all w e F, | |0(w)| | *£ Af |w| where M = maxdeD(\\(j)(d)\\). In
particular, \\y\\ =s M \y\ for all y e G.

Proof. The proof is by induction on \w\. The conclusion of the proposition
clearly holds for any element w of D, and hence for any word of length 1 in our
generators. Assume that ||0(w)|| =sM \w\ whenever \w\ <k. Let w be a reduced
word such that \w\ = k. Since || || and | | are constant on conjugacy classes and
on orbits of the inversion operator, we may assume that w is cyclically reduced,
and we may replace it by any cyclic permutation of itself or by its inverse. If w is
not in D, then some letter must appear at least twice in w. Thus we can write w in
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one of the following forms:

(*) w = Ax^

or

(**) w = AxiBxT1,

where in either case w is cyclically reduced and A and B are subwords of w. In
Case (*), A or B may be empty.

We first observe that Case (**) can be reduced to Case (*). By Axiom IV and
the induction hypothesis we have that either ||0(w)|| = II^AKJU""1)!! or

Thus we may assume that ||0(w)|| = W^AxjB'1)^, since \w\ s= \Ax2iB
suffices to prove that the conclusion holds for AxjB'1. But

and either \B~xAx*\ < \w\ or else B~lAxj is in Case (*).
To prove the result in Case (*) we again apply Axiom IV and the induction

hypothesis to conclude that either

||0(M>)|| = 110(^,^)11 = \\<j>(AB-1)\\^M(\w\-2)<M\w\
or

\\<t>(AXi)\\

= M\w\.

4.2. THEOREM. If G is a finitely generated group then the space WLF(G) is a
compact subset of P n which is defined by an infinite set of weak linear inequalities.

Proof We continue to use the notation defined above. Let

/ = ! ! [0, |y|]c=[RQ

ye£2

Let 2 c Q b e the (finite) set of conjugacy classes represented by <f>(w) for w e D.
Let /<= / be the subset consisting of all points p eI for which there exists a e l
such that the ath coordinate of p is 1. Clearly / is a compact subset of / - {0}.

We claim that the image of / in Pn contains lPLF(G). Suppose that
a e XVLF(G) and let || || be a non-trivial pseudo-length function in the projective
class a. Since || || is non-trivial, Proposition 4.1 implies that | |CT||>0 for some
o e 2. We may rescale || || so that M = maxCTe2: (||cr||) = 1. For any y e Q and
g e y we have | |g | |^ |y | and ||a|| = l for some element a of 2. Thus a is
contained in the image of /.

Now, since the image of / in P n is compact, it follows that WLF(G) has
compact closure; we need only show that it is closed. For a given choice of
elements g and h, each of the Axioms I-V is equivalent to a conjunction of
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finitely many linear equations or weak linear inequalities. Thus the set of
pseudo-length functions is the intersection of an infinite family of closed subsets
of Ua and hence is closed. It is also invariant under the action of the group of
homotheties, so lI/LF(G), being its image in the quotient PQ, is closed.

Before proving the compactness result for PLF(G) let us extend some of the
notions we introduced for translation length functions to pseudo-length functions.

4.3. Let || || be a pseudo-length function. An element g e G is hyperbolic
if II&IIX); otherwise it is elliptic. A non-trivial pseudo-length function || || is
reducible provided \\ghg~1h~1\\ =0 for all hyperbolic g, heG. Two elements g
and h of G form a good pair (cf. 3.6) if

The following theorem, which is analogous to several results in § 2, is used to
prove that PLF(G) is compact.

4.4. PROPOSITION. Let \\ ||: G—»[R be a non-trivial pseudo-length function.
Either there exists a good pair of elements of G or \\ \\ is the translation length
function of an action of G on R.

This result is a formal consequence of the defining axioms for pseudo-length
functions. We postpone the proof of this result until § 6, although the statement
will be used to prove the following:

4.5. THEOREM. / / G is a finitely generated group then the space PLF(G) is a
compact subset of PQ.

Proof. Consider a sequence (an) of points of PLF(G). Since WLF(G) is
compact, there is a subsequence of (an) which converges to the projective class of
a pseudo-length function || ||. We may choose representatives for the classes in
this subsequence to obtain a sequence || ||m of translation length functions which
converges to the pseudo-length function || ||. We must show that || || is a
translation length function. By Proposition 4.4, if there is no good pair of
elements for || || then it is a translation length function. Thus we can assume that
there exists a good pair of elements g and h of G. The condition on pseudo-length
functions that g and h be a good pair is clearly open. Thus, if we let Tm denote a
tree upon which G acts minimally with translation length function || ||m, then, for
m sufficiently large, g and h form a good pair for the action on Tm. By taking a
further subsequence we may assume that g and h form a good pair for the action
on all Tm.

We now appeal again to the results of Chiswell and Alperin and Moss or
Imrich. Let pm be the point in Tm which is the intersection of the axes of g, h, and
gh~x. Let Lm be the based length function for the action of G on Tm associated to
the point pm. As in the proof of Theorem 3.7, Lm can be expressed in terms of
|| ||m. The formula for Lm is a maximum of linear combinations of lengths of
elements of G, and hence is continuous as a function on RG. Thus the based
length functions Lm converge to a function L: G—> R. We claim that the function
L satisfies Chiswell's axioms for based length functions. In fact, the set of
functions from G to R which satisfy Chiswell's axioms is closed since, for a given
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choice of elements g, h, and k, each axiom is equivalent to a conjunction of
disjunctions of finitely many linear weak inequalities. Using the results of
Chiswell and Alperin and Moss or Imrich we construct an action TOBxG^>Toa and
a point p e Tm such that Lp = L. Let || ||oo be the translation length function of this
action.

It follows easily from 1.3 that for any action T Y,G-*T, for any point p e T,
and for any g e G, we have

Applying this to the actions on Tm and the points pmeTm, and using the fact that
the Lm converge to L we see that, for all g e G,

Thus, || ||oo = | | || • Therefore PLF(G) is closed in WLF(G) and hence is compact.

4.6. REMARK. The proof of Theorem 4.5 shows that, away from the set of
translation length functions of actions on IR, PLF(G) is locally defined by
(infinitely many) weak linear inequalities.

5. Actions without free arc stabilizers

In this section we consider minimal actions on [R -trees such that no stabilizer of
a non-degenerate arc in the tree contains a free subgroup of rank 2. Recall that
the space of projective classes of translation length functions of such actions is
denoted SLF(G). The main result of this section is that SLF(G) is a closed subset
of PLF(G) and hence is compact. First we treat the case when there is a
non-trivial reducible translation length function whose projective class is con-
tained in the closure of SLF(G).

5.1. LEMMA. Let G be a finitely generated group. If there is a reducible action
whose projective class is in the closure of SLF(G), then G contains no free
subgroup of rank 2, and hence SLF(G) = PLF(G).

Proof. We begin by considering the case when SLF(G) itself contains the
projective class of a reducible action. Then the translation length function is
induced from a homomorphism of G to Iso(lR). If the action has an invariant line,
then the kernel, K, of this homomorphism fixes the line and is thus contained in
an arc stabilizer. If the action has a fixed end then, since each element of K has a
fixed point, any finitely generated subgroup of K has a common fixed point. Such
a subgroup must therefore fix the ray from its fixed point to the end fixed by G,
and hence is contained in an arc stabilizer. Since we are assuming that the
projective class of this reducible action belongs to SLF(G), it follows that K
contains no free group of rank 2. Consequently, the same is true of G.

We now consider limit points of SLF(G). Note that the compactness of
PLF(G) implies that the closure of SLF(G) consists of projective classes of
translation length functions. Let || || be a translation length function whose
projective class is a limit of classes in SLF(G). There exists a sequence || \\m of
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translation length functions converging to || ||, where each || ||w corresponds to
a minimal action on an K-tree Tm for which stabilizers of non-degenerate arcs
contain no free subgroups of rank 2. By the above we can assume that for all m
the action of G on Tm is irreducible. Choose an element g e G such that \\g\\ >0.
Fix M with ||£||m > 0 for all m^M. By Lemma 2.1, there is a hyperbolic element
h of G such that in TM we have Cg fl Ch = 0 . Let k — hgh~x. Since g and k are
conjugate in G, we have ||Jfc||m = \\g\\m > 0 for all m > M. By 1.7, Cg n Ck = 0 in
Tw. By Lemma 2.6, k and g generate a free subgroup of rank 2 in G. Thus for any
m >M the length Aw of C s n Q c TM is less than 4 ||g||m = 4 ||Jfc||m. For otherwise
by 1.10 one of the two free subgroups of rank 2, ([g, k], [g2, k\) or ([g, k'1],
[g2, A;"1]), would fix a non-degenerate arc in Tm. This means that, for each
m>M, either g4 and one of k±4 form a good pair for the action of G on Tm, or
else g4 and /i4 have axes in Tm which meet in at most a point.

Thus by 3.4 or 3.5 we have

V 4 A T 4
V4AT4 | |m ^ 2 ||g4|L + 2 ||A:4||W - 2AW ^ 8

Taking the limit yields ||[g4, A:4]|| ̂ 8 ||g|| >0. Clearly then || || is not the
translation length function of an action of G on U.

The compactness of SLF(G) is a consequence of the following geometric fact.

5.2. LEMMA. Let px and p2 be points of an U-tree T. Let g1 and g2 be isometries
of T which move both px and p2 a distance less than e. If &\s\{px, p2) > 2e then
Cgx fl Cg2 contains a geodesic of length at least d\s\.{px, p2) — 2e.

Proof Let Nt and N2 be the closed e-neighbourhoods of px and p2 respec-
tively. These are disjoint subtrees of T. Let a be the unique shortest geodesic
joining a point of Â  to a point of N2. We will show that a is contained in the
characteristic set of both gx and g2. By symmetry it suffices to consider g =gx. By
1.3, an isometry moves each point more than the distance from the point to the
characteristic set of the isometry. Thus the distance from /?, to Cg is at most e, so
Cg passes through both Â  and N2. Thus Cg must contain a geodesic joining a
point of Â ! to a point of A .̂ By the proof of 1.1, any such arc contains a.

5.3. THEOREM. If G is a finitely generated group then the space SLF(G) is a
compact subset of Pn .

Proof By Theorem 4.5, we need only show that SLF(G) is closed in PLF(G).
Consider a sequence of points of SLF(G) which converges to a point of PLF(G).
By choosing appropriate representatives of these projective classes we obtain a
sequence (|| \\n) of translation length functions for actions with small arc
stabilizers which converges to a translation length function || H,. For n=sa>, let
G x T n - > r n b e a minimal action whose translation length function is || ||n. For
n <°o, we take the action on Tn to have small arc stabilizers. By Lemma 5.1, we
can assume that the action on T^ is irreducible. We assume that there exists a
non-degenerate arc a in Tx which is stabilized by a rank-2 free subgroup of G.
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This will lead to a contradiction. A subgroup of index at most 2 in the stabilizer of
a fixes the endpoints of a. Thus there is a free group (a, b) of rank 2 in G which
fixes the endpoints of a. The main step in the proof is to show that the trees Tn

converge to the tree 7^ as metric spaces. This implies that the endpoints of a can
be approximated in the Tn, for n large, by points which are moved a very small
distance by a and b. On the other hand, the distance between these two points is
approximately equal to the length of a. We will then apply Lemma 5.2 to
conclude that there is an arc in Tn which is stabilized by a free subgroup of rank 2
of {a, b).

Since the action of G on r« is irreducible there is a good pair (t, u) for the
action of G on Tx. Since this is an open condition, t and u are a good pair of
isometries of Tn for all sufficiently large n. Thus, for almost all positive n and for
n = oo, there is a unique point pn in Tn which is common to Ct, Cu, and Ctu-\. By
the results of Chiswell and Alperin and Moss or Imrich, as in the proof of
Theorems 3.7 and 4.5, the based length functions Ln = LPn, for n <<*>, converge
to Loo = LPa>. Since the actions that we are considering are minimal, each point of
Tn lies on the geodesic from pn to pn • g for some g e G. (The union of all such
geodesies is an invariant subtree.) For any g e G and p e [0,1] we let the pair
[g, p]n designate the point qn of Tn which lies on the geodesic from pn to pn • g and
satisfies dist(pw, qn) = p dist(/?rt, pn -g).

For n an integer or oo we will denote by dn the metric on Tn. We claim that, for
all p and o in [0,1],

lim dn([g, p]n, [h, o]n) = d^dg, p]m, [h, o]x).

To see this consider the smallest subtree of Tn containing the three points pn,
pn -g, and pn -h. In general this is a triad as shown in Fig. 9, although it may
degenerate to an arc if one of the edges of the triad has length zero. The lengths
of the edges of the triad are determined by the distances between pairs of
endpoints; they satisfy a non-singular system of linear equations whose

nn-g

Pn

FIG. 9

coefficients are determined by these distances. The distances are given in
terms of Ln as follows: dist(pn, pn-g) = Ln(g), dist(pn, pn • h) = Ln(h), and
dist(pw • g,pn - h) = Ln(hg~l). Let Cn denote the length of the segment joining pn

to the centre point of the triad. Then Cn = \[Ln{g) + Ln(h) - Ln(hg~1)], and, for
n an integer or oo,

A a ^ \u ^\ fP + °~2Cn if P>Cn and o>Cn,dn([g, P\n, [h, O\n) = l|p-a| otherwise.

Since this distance depends continuously on Ln, the claim follows.
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Next we claim that

lim dn([g, p]n, [g, p]n • h) = dj\g, ?]„, [g, p]* • h).

Here we consider the smallest subtree of Tn containing the four points pn, pn- g,
pn • h, and pn • gh. Again, the lengths of the edges of this subtree are determined
by the distances between pairs of its endpoints, and these are given as linear
expressions in Ln. The distance from [g, p]n to [g, p]n • h is given by a piecewise
linear expression in p and the lengths of edges of the subtree. Thus it varies
continuously with Ln, which proves the claim.

Let e and / be the endpoints of a. Write e = [glf px]x and f = [g2, P2]». Set
en = [g\> P\]n and/,, = [g2, p2]n, and let an be the geodesic in Tn with endpoints en

and/,,. By the discussion above,

lim length(ar,,) = length(a') > 0.

Also,

lim dn(en, en-a) = 0= lim (/„, /„ • a),

n—»oo n—»°°

and similarly for b. It follows immediately that

lim | |a |U=0= lim ||6|U.
n—*°° n—»oo

By 5.2, for n sufficiently large, Ca n Cb in Tn contains the middle third of ocn.
Now, by 1.10, for n sufficiently large, one of the free groups of rank 2,
([a, b], [a2, b]) or ([a, b~x], [a2, b~1]), fixes a non-degenerate sub-interval of an

in Tn. This is impossible. This contradiction establishes Theorem 5.3.

6. Pseudo-length functions

In this section we will establish the dichotomy (Proposition 4.4) for pseudo-
length functions which was used in the proofs of the compactness theorems:

Given a pseudo-length function || \\ on G, either there exists a good pair of
elements of G or else \\ \\ is the translation length function for an action of G
on U.

This section consists of a series of lemmas. They establish various properties of
pseudo-length functions directly from the axioms. (These properties are easily
seen to hold for translation length functions by direct geometric arguments.) We
view these results as progress towards deciding whether or not every pseudo-
length function is actually a translation length function.

We assume throughout this section that || ||: G—>U is a pseudo-length
function.

6.1. LEMMA. ForallgeG, \\gn\\ = \n\ \\g\\.

Proof. The proof is by induction on n. By Axiom II, it suffices to consider
n 2= 0. The case where n = 0 follows from Axiom I, and the case where n = 1 is
trivial. Assume that n>\ and that ||g*|| = |ifc| ||g|| for all 0^A:<n. If | |g | |=0
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then, by Axiom IV applied to g"'1 and g, either ||g"|| = ||g"~2|| = 0 or

| | g l =max( | |g l , | |g"-2 | | )^ Wg^W + \\g\\=0.

If | |g | |>0 then, by induction ||g"-2|| = U*""1 • g-*\\ < Wg^W + \\g\\. Thus by
Axiom V applied to gn 1 and g,

6.2. LEMMA. Suppose that g and h are elements of G with \\g\\ > 0, \\h\\ >0, and
\\8n\\ = II&II + 11̂ II- Then for all positive integers m and n,

\\8mhn\\=m\\g\\+n\\h\\.

Proof. Suppose that we have established the result in the special case when
m = 1. Then for any m^Owe have

\\8mh\\ = \\hgm\\ = \\h\\+ m\\g\\.

Now apply the result in this special case to the elements gm and h. We conclude
that, for any m, n 5= 0,

Thus, it suffices to prove the result for m = 1 and for all n 5= 0.
Now let m = 1. The result is trivial if n = 0 or n = 1. Assume that n 2= 2 and

Ilgfc*ll = llgll+A:p|| forallO^A:<n. Since \\gh"-2\\ < \\gh"-l\\ + \\h\\, Axiom V
implies that

Lemmas 6.1 and 6.2 are sufficient for the following first step toward the proof
of Proposition 4.4:

6.3. PROPOSITION. Let || ||: G-*R be a non-trivial pseudo-length function.
Either there exists a good pair of elements of G or || \\ is reducible.

Proof. Suppose that || || is not reducible.

CLAIM. There are elements g and h of G such that | |g| |>0,
\\ghg-1h-l\\>0> and\\gh\\ = \\g\\

Since || || is not reducible, there are elements g, and /it with ||gi| |>0,
^ill >0, and \\g1h1gT1h^\\>0. By Axiom V,

Replacing hx by /if1, if necessary, allows us to assume that ||gi/ii|| > ||gi|| + P i | | .
If equality holds, then we take g=g\ and h = hx. Clearly in this case the elements
are as required by the claim. If equality does not hold, then we take g = gi/ii and
h = hx. With these choices, ||g|| >0, | |/i| |>0, and \\[g, h)\\ = \\[gu hx]\\ >0.
Furthermore, since

Axiom V guarantees that ||gfr|| = ||g|| + \\h\\. This completes the proof of the
claim.
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Now set a =gh and b = hg. Note that ||<z|| = \\b\\ + ||g|| + \\h\\. By Lemma 6.2
we have

\\ab\\ = \\ghhg\\ = \\g2h2\\ = 2 \\g\\ +2 \\h\\ = \\a\\ + \\b\\.

Thus by Axiom V there are two cases.

Case 1: \\ab\\ = \\a\\ + \\b\\ > Haft"1!!- In this case we show that a and b are a
good pair. Clearly, we have 0< \\a\\ + \\b\\ - Wab'^. Also, since \\ab~l\\ =
\\ghg~1h~l\\>0, we have

2min(||a||, ||*||) = 2 ||g|| +2 ||A|| = ||a|| + ||fr|| > |M| + ||*|| - \\ab~%

Case 2: \\ab\\ = \\a\\ + \\b\\ = \\ab~l\\. In this case we show that ab and b2 are a
good pair. First,

Thus,

||a
and

2min(||a6||, ||62||) = 2 min(||a|| + ||Z>||, 2 ||fc||) > 2

This completes the proof.

The rest of this section is devoted to the proof that any reducible pseudo-length
function is the translation length function of a reducible action.

For the rest of this section \\ \\ denotes a reducible pseudo-length function.

6.4. LEMMA. Suppose that \\g\\ >0 and \\h\\ >0. Then

and

Proof. This will follow once we show that

and that

To do this apply Axiom V to g and hgh~x to conclude, since \\g{hg~xh~l)\\ = 0,
that \\g(hgh-l)\\ = \\g\\ + \\hgh-l\\=2\\g\\. Next, by Axiom V applied to g and h
we have two cases to consider.

Case 1: \\gh\\ = \\gh~l\\ > \\g\\ + \\h\\. In this case we have

\\gh\\ + Hg/r1!! > 21|£|| + 2 p | | = Wghgh-1]] + \\gh2g-l\\-

According to Axiom V applied to gh and gh~l we have
l\\ = max(\\ghgh-1\\,
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This is a contradiction, leaving us to consider:

Case 2: max(||g/i||, Wgh^W) = ||g|| + \\h\\. By Axiom IV applied to gh and gh~l

we have either

(2A) Wghgh-'W = \\gh2g-l\\

or

(2B) max(\\ghgh-% Wgtfg^W) * \\gh\\ + Wgh^W.

First assume that the equality (2A) holds. Then ||g|| = \\h\\. Thus

max(\\gh\\,\\gh-1\\) = 2\\g\\=2\\h\\.

If min(||g/i||, Hg/i"1!!) > 0 then Axiom V applied to gh and gh'1 gives

a contradiction. Thus min(||g/*||, Hg/i"1!!) = 0, so

\\gh\\ + \\gh-l\\ = max(\\gh\\, ||g/i-1||) = 2 | |g | |=2p | |=2max( | |g | | , \\h\\).

Now we assume that the equality (2A) does not hold. Since Hg/ig/i"1!! =2
and llg/i2^"1!! =2 \\h\\, the weak inequality (2B) is equivalent to

We complete the proof in this case by showing that we have equality. This is
immediate from Axiom V if min(||g/*||, ||^/i~1||)>0. On the other hand, if this
minimum is zero then

2max(||g||,

= max(||s||, \\h\\)

2max(||s||, \\h\\).

6.5. LEMMA. / / ||g|| =0 then either \\gh\\ = \\h\\ for all h with \\h\\>0, or else
\\gh\\=0forallh with \\h\\>0.

Proof. Suppose that h is an element of G with \\h\\ >0 such that \\gh\\ >0.
Since Hfe/i)/*"1!! = II&II = 0, applying Lemma 6.4 to gh and h gives

Thus \\gh\\ = \\h\\. We claim that \\ghn\\ = \n\ \\h\\ for all n. by Lemma 6.4,

max(||g/i||, \\gh-1\\) = \\h\\ =mm(\\gh\\, \\gh-l\\).

Thus, \\gh\\ = Hg/i"1!!- Hence, it suffices to prove the result for all n >0. This we
do by induction. Assuming the result tor all 0 ̂  m < n and applying Lemma 6.4 to
gh"'1 and h, we have

maxfllsAI, | |^"-2 | | ) = Wgh'^W + \\h\\ > \\gh"-2\\.

Thus, \\ghn\\ = \\gh"-1\\ + \\h\\=n\\h\\.
Suppose h and k are elements of G with \\h\\ >0 and p | | >0 and \\gh\\ =

Replacing h by h~x if necessary, we may assume, by 6.4, that \\hk\\ =
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By Lemma 6.2 we have \\hnk\\ = n \\h\\ + ||A:|| for all n >0. Applying Lemma 6.4
to gh~n and hnk we conclude that for each positive integer n either \\gk\\ =
\\hn\\ + | | *1 + 11*11 or ||g*|| = ||*||. Clearly we must have \\gk\\ = \\k\\.

One can now see how to attempt to define an action of G on U which realizes
|| || as a length function. Lemma 6.5 divides the elements g of G with \\g\\ = 0
into two classes which correspond to those which should act by reflection and
those which should act trivially. (If \\g\\ = 0 and \\gh\\ = 0 for all h with \\h\\>0
then g should be a reflection.) The elements g e G such that ||g|| > 0 will act on U
by translation. Clearly if ||g|| > 0 and \\h\\ >0 then g and h should translate in the
same direction if and only if \\gh\\ = \\g\\ + \\h\\. Thus the translation directions
can be determined by choosing a direction for one translation and comparing the
others to it. Since the translations form an index-2 subgroup of Iso(lR), once the
action of the translations has been defined it is not difficult to extend to an action
of G.

The next two lemmas show that this procedure for determining the translation
directions is consistent.

6.6. LEMMA. Suppose that s, ueG satisfy \\u\\ > 0 and \\sun\\ =£0 for some n.
Then for t equal to either s or s'1 we have \\tum\\ = m \\u\\ + \\t\\ and | | f~V"| | =

Proof. If \\s\\ =0, then this is immediate from Lemma 6.5 and Lemma 6.1. If
||5||>0, then by Lemma 6.4 we can choose t equal to s or s~l so that
IM| = ||f|| + ||u||. Then, by Lemma 6.2, ||mm|| = ||/|| +m \\u\\ for all m ^ 0 .
Consequently, by Lemma 6.4 again, we have ||f~1Mm|| = | m ||w|| — ||?|| | for all

6.7. COROLLARY. If S, ueG satisfy | | « | | > 0 and \\sun\\±Q for some n, then
\\sum\\ — \\um\\ is independent of m for m sufficiently large, and is equal to ±\\s\\.

If ueG satisfies ||u|| > 0 , then we define Su a G to be the set of s e G with
||^M"II =̂ 0 for some n, and we define TU: SU—>R by sending each seS to the
stable value of \\sum\\ — \\um\\. We define V c= G to be the subgroup generated by
all g e G with ||g|| > 0. Clearly V is a normal subgroup of G.

6.8. LEMMA. Suppose that u is a hyperbolic element of G. Then Su contains V,
and ru restricted to V defines a homomorphism of V to U with TU(V) = ± \\v\\ for
all veV.

Proof. Clearly 1 e Su and rM(l) = 0. If g is hyperbolic then by Lemma 6.4,
g e Su. Since V is generated by hyperbolic elements, to prove that V a Su and that
TU restricted to V is a homomorphism, it suffices to show that if a,b eSu then
ab e Su and xu(ab) = ru(a) + ru(b). We consider \\abuk\\ = \\aum. u~mbuk\\. If m
is sufficiently large, and if k is sufficiently large given m, then we have

and
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with both aum and u~mbuk hyperbolic. By Lemma 6.4,

* = \\aum. u~mbuk\\ = \m\\u\\ + xu{a) ± ((* ~ m) \\u\\ + ru(b)) \.

The left-hand side of this equation is independent of m, and for large enough k it
holds for arbitrarily many values of m. Since the equation cannot hold if the
ambiguous sign is ' - ' for three consecutive values of m, there must exist m for
which the sign is ' + '. Hence

Clearly then, ab e Su and ru(ab) = zu(a) + ru(b). This proves that TU is defined on
all of V and is a homomorphism on V. By Corollary 6.7, TU(V) = ± \\v\\ for all
veV.

At this point we have proved the desired properties for || || restricted to the
normal subgroup V of G:

6.9. COROLLARY. Let ueG be hyperbolic. The restriction of \\ \\ to the normal
subgroup V of G is the translation length function of the action of V by translations
on U determined by the homomorphism TU: V->U.

In order to complete the proof we need to understand the relationship between
V and G. To do this we need to identify the kernel of the homomorphism ru and
relate it to V. The next two lemmas accomplish this.

6.10. LEMMA. Suppose that \\ \\ is non-trivial, and choose u € G hyperbolic. Let
KaG be defined by

K = {geG\ \\g\\ = 0 and \\gh\\ = \\h\\ whenever \\h\\>0}.

Then K is a normal subgroup of G, Kcz V, and K = kernel(Tu).

Proof. To show that KczV, observe that for any keKv/e have \\ku\\ = \\u\\ =
llu"1!! >0. Thus, k = {ku)u~l e V.

Next we show that K = kernel(ru). It is immediate from the definitions that
K cz kernel(ru). Conversely, suppose that TU(V) = 0 for some v € V. Then
||u«"|| = ||M"|| for all n sufficiently large. By Lemma 6.4 it follows that ||u|| =0.
By Lemma 6.5 we have ||vA|| = \\h\\ for all h e G with \\h\\ > 0. This proves that
veK.

Finally, we show that K is normal in G. To see this assume k e K and g e G.
Then Hgfcg"1!! = \\k\\ = 0, and for any h e G with p | | > 0 we have

\\gkg~1. h\\ = ^ ^

6.11. LEMMA. Suppose that || || is reducible and not identically zero. Then

(i) for all reG -V and all v eV we have rvr~lv e K, and

(ii) [G:V]*2.

Proof (i) Since V is generated by hyperbolic elements, we can assume for the
proof of (i) that ||u|| > 0. First we show that Ijrur"1^!! = 0. We know that ||r|| = 0
and ||ri>||=0. Lemma 6.4 applied to rvr~x and v shows that Urur"1!;!! equals
either 2 ||u|| or 0. Suppose that it equals 2 ||u||. By Axiom IV applied to rv and
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rv l, since

we must have

This is a contradiction so we are left with Hrir"1*;!! = 0.
Notice that

Thus by Lemma 6.5, rvr~lv e K.
(ii) Let G' = G/K and V' = V/K. It suffices to show that [G':V"]«s2.

According to part (i), under the conjugation action of G' on V, every element of
G' - V acts by sending v to v~l for all v eV. Since any hyperbolic element of G
becomes an element of infinite order in V, it follows that every element of
G' — V acts by the same non-trivial homomorphism on V . The only way this
can happen is if [G'\ V] ^ 2 .

Now we are in a position to prove the main result of this section.

6.12. THEOREM. Every reducible pseudo-length function on G is the translation
length function of an action of G on U.

Proof. Let || ||: G-» 1R be a reducible pseudo-length function and let K and V
be as in Lemmas 6.8 and 6.10. In Corollary 6.9 we constructed an action of V on
IR so that an element v of V translates by an amount equal to ||v||. The kernel of
this action is K. If V = G, then the proof is complete. Suppose that V =£ G. We
extend the action to an action of all of G on U by choosing an element r e G — V
and letting it act by reflection fixing any point of IR. This defines an action by the
full group G because V has index 2 in G and because the relation rvr = v~l holds
modulo K for all v eV.
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