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INTRODUCTION 

BECAUSE THERE exist groups like those described in [l], it is futile to attempt to study 
the solution of equations in an arbitrary group. It is reasonable, however, to do so for 
free groups. Results along these lines have been obtained by Edmonds, Lyndon, 
Malcev, Schupp, Wicks and others. With few exceptions the equations which have 
been successfully handled are equivalent to equations involving products of commu- 
tators or squares. The defining relations for fundamental groups of 2-manifolds have 
this form, which suggests that one should be able to use the theory of surfaces to 
study these equations. This is what will be done here. 

If g is an element of the commutator subgroup [G,G] of a G, we define Genus (g) 
to be the least integer n such that there exist elements al, bl, . . . ,a,, b, of G with 
g = [a,, b,]. . .[a,, b,]. (Here [a, b] denotes abu-‘b-l). Similarly, if g can be written as a 
product of squares, we define Sq (g) to be the least integer n such that there exist 
elements al,. . . ,a, of G with g = u12.. .u,,~. 

We begin by describing a homotopy classification of maps from a bounded surface 
to a l-complex when the surface satisfies certain minimality conditions. This is 
applied to give short proofs that there exist effective procedures for computing Genus 

(g) and Sq (g) when g is an element of a free group. The existence of such procedures 
was first shown by Edmunds [2,3] using cancellation arguments. These algorithms are 
used in some non-trivial (and somewhat surprising) examples. We then give an exact 

description of a set of standard forms for words of a given genus. The sets of all 
solutions to the equations g = [(Y,, p,]. . .[a”, pn] and g = (Y,~. . an2 are described under 
the conditions Genus (g) = n and Sq (g) = n respectively. Finally, under suitable 
conditions on groups U and V, we show that there are effective procedures for 
computing Genus (g) and Sq (g) when g is an element of the free product U* V. 

81. SURFACES AND PRODUCTS OF COMMUTATORS OR SQUARES 

We will denote by T, an orientable surface of genus n with one boundary 
component. Let P,, be a non-orientable surface of euler characteristic 1 - n having 
one boundary component. 

If X is an arc-connected topological space with n,(X) = G, then there is a well 
known one-to-one correspondence between the set of conjugacy classes in G and the 
set of homotopy classes of maps from the circle S’ to X. We will denote the 
conjugacy class of g in G by [g], and if f:S’+X is in the homotopy class 
corresponding to [g] we will say that f represents [g]. 

1.1 An element geTI is a product of n commutators (resp. squares) if and only 
if there exists f: T, +X (f: I’, +X) such that flaT, (flap”) represents [g]. 

Given any expression for g as a product of commutators, a map f: T, +X can be 
constructed from the usual description of T, as a (4n + 1)-gon with identifications 
on its boundary (see [41). Conversely, any map f: T,, +X, such that flaTn represents [g], 
gives rise to an expression for g as a product of n commutators. This is because 
aI contains elements al, b,, . . . ,a,, b, such that the inclusion of aT represents the 
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conjugacy class of [a,, b,].. .[a,, b,] in r,(T). Similar arguments apply to represen- 
tations of g as a product of squares. 

1.2 Let I, denote an “r-leafed rose” or wedge product of r circles. The fun- 
damental group of Ir is free on r generators, so questions about products of 
commutators or squares in a free group translate into questions about maps from T, 
or P, to I,. 

Let F, be the free group with generators X,, . . . ,X,. Then F, is isomorphic to 
n,(r,). To make this isomorphism explicit we will assume that each “petal” of I?, is 
oriented. Let pi be a point on the ith petal having a neighborhood homeomorphic to 
an interval, and let the base point * be disjoint from pi, i = 1,. . . ,r. 

Any oriented path in Ir, transverse to pl, . . . ,p,, corresponds to a word in the 
letters {X;‘, . . . ,XF’}. The word is obtained by listing the intersections of the path 
with the points pl, . . . ,pr. If the path crosses pi in the same direction as the orientation 
of the ith petal, then we write Xi. A crossing of pi in the opposite direction 
corresponds to X;‘. Thus any map from S’ to Ir, transverse to the points pI, . . , ,pI, 
corresponds to a cyclic word. 

1.3 Tight maps. If S is a surface with boundary we will say that a map f :S+r, is 
tight if: (1) The map f is transverse to pl, . . . ,p,. (2) The restriction of f to each 

component of &!S corresponds to a reduced cyclic word. (3) The set f-‘( ii, pi) is a union 

of disjoint properly embedded arcs which cut S into disks. 

1.4 THEOREM. Let w E [F,, F,] be an element of genus n. If f: T,, + r, is any map such 

that fldTI represents [WI, then f is homotopic to a tight map. 

Proof. We will modify f by a series of operations which preserve its homotopy 
class and which will eventually produce a tight map. To conserve symbols the new 
map obtained at each step will also be called f. 

First we put f in general position with respect to pI, . . , ,p,. Then, since fldT, is 
homotopic to a map :S’ +Ir, which corresponds to a reduced cyclic word, we may 
change f on an annular neighborhood of dT, so that flaTn corresponds to a reduced 
cyclic word. This can be done so that the resulting map is still transverse to p,, . . . ,pr. 

(See PI) 

Now f-’ 
( > 

bpi consists of arcs and simple closed curves. We claim that each of 
i=l 

these simple closed curves bounds a disk in T,. For if (+ is a simple closed curve in 

f-1( ’ ) Upi then we may define a new surface S by cutting T,, along u and capping off 
i=l 

the two new boundary circles. By sending the caps to the point f(v), S can be mapped 
into I, so that the restriction to &S represents [w]. However, unless u bounds a disk 
in T,,, a computation of euler characteristics will show that the bounded component of 
S has genus less than n. This would contradict Genus (w) = n, so w must bound a disk 
in T,,. 

Next we eliminate the simple closed curves in f-’ 
( > 

CJpi . Let v be a simple closed 
i=l 

curve with f(w) = pi. Let B be the disk bounded by (T in T,. Redefine f to have the 
value pi at every point of B, and then perturb it in a small neighborhood of B to reduce the 

number of simple closed curves in f-’ 
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off because r2(Ir) = 0. Thus by induction we can assume that f-‘( ii, pi) consists only of 

arcs. 

If we cut T, along the arcs in f-’ 
( ) 

;Ipi we obtain a number of components. We 
i=l 

must verify that each of these is a disk. But the boundary circles of each component 
are mapped by f to contractible curves in I,. Thus if any component were not a disk 
we could replace it by disks (one for each boundary circle) and obtain a contradiction 
to Genus (w) = n as above. 0 

The proof of Theorem 1.4 is valid without the hypothesis that the surface be 
orientable. However, to state the non-orientable version we need a definition. If w E F, 
is either a product of commutators or a product of squares, define x(w) to be the 
largest integer n such that there exists a surface S with one boundary component and 
x(S) = n, and a map f:S+I, such that flds represents [w]. 

1.5 THEOREM. Let w E F,, let S be a surface with one boundary component, and 
suppose that f:S + r, is a map such that flas represents [WI. 1f x(S) = x(w) then f is 
homotopic to a tight map. 

Proof. The proof is similar to that of Theorem 1.5. 

1.6 The pairing of a tight map. If S is a surface with one boundary component and 
f:S+I’, is a tight map, then fjas:S1 + I, corresponds to a reduced cyclic word W. Let 
) W( be the length of W. By a letter we mean one of the (WI occurences of a factor 
X:’ in W. A pairing of the letters of W is induced by f; two letters being paired if 

they correspond to the endpoints of an arc in f-’ 
( > 

6 pi . If S is orientable then each 
i=l 

letter Xi in W is paired with an XT’. Otherwise an Xi may be paired with either an Xi 
or an XT’. 

Throughout this paper a pairing of the letters of W will be assumed to have the 
property that each X: occurring in W is paired with either an X; or an X;‘. If each 
X: is paired with an X;’ then the pairing will be called an orientable pairing. (Here 
E = 2 1). 

1.7 THEOREM. Let Sand T be surfaces with one boundary component, and let f : S + r, 

and g: T + T, be tight maps. If f I dS and glaT both correspond to the same word Wand if f 
and g induce the same pairing of the letters of W, then there is a homeomorphism h: S --, T 
such that f is homotopic to gob. 

Proof. There are handle decompositions of S and T induced respectively by f and 

g. Let A be an annular neighborhood of 8s. For each arc LY in f-’ 
( ) 

6pi there is a 
i=l 

l-handle with core (Y rl (S - A) attached to A. The l-handle is attached with a 
half-twist if and only if the end-points of LY both correspond to an Xi or both 
correspond to an X;’ (Fig. 1). Let A, be the union of A and these l-handles. Since f is 
tight, S is obtained by attaching a 2-handle to each component of 8Al except JS,. 
There is a similar handle decomposition induced on T by g. 

The attachment of the l-handles in each of these handle structures is completely 
specified by the pairing of the letters of W. It follows that the handle decompositions 
are isomorphic, and that S and T are homeomorphic. Moreover, we can assume that 

the homeomorphism h : S-* T maps f-’ (i,pi) to g-‘( i,pi) so that each point of as 
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Y 

Fig. 1. Attaching l-handles 

n f-1 bp, ( > is mapped to the point of aT n g-’ CJpi which corresponds to the 
i=l ( > i=l 

same letter of W. 

To construct a homotopy between f and g4 we note that the two maps agree on 

f-1( r ) Up, . We can then construct a homotopy between the restrictions of f and g4 
i=l 

to as u f-’ 
( > 

LJpi because r, -{PI,. . . ,p,} is contractible. Finally, since S - 
i=l ( 

X3 U 

f-I( i,p;)) consists of open 2-cells, and nz(T,) = 0, we can extend the homotopy over 

all of S. 0 
1.8 Suppose we are given a reduced cyclic word W and a pairing p of the letters of 

W. We can then construct a surface S and a tight map f :S + r, so that fjds 
corresponds to W, and so that f induces the pairing p. 

We construct S to have the handle structure described in the proof of theorem 1.7. 
The map f is easily defined in terms of this handle structure. By 1.7, S is unique up to 
homeomorphism. Thus we are justified in calling S the surface associated to the 
pairing p. 

If there are d 2-handles in the handle decomposition of S then x(S) = d -1 W//2. 
The number d can be computed directly from the pairing-we will do this in the 

examples of 02. 

$2. COMPUTATION OF GENUS (w) AND Sq(w) 

2.1 THEOREM. There is an effective procedure for computing Genus (w) for any 
element w E [F,, F,]. 

Proof. Let n = Genus (w) and let W be the reduced cyclic word which represents 
[w]. By 1.1 and 1.2, T, is associated with some orientable pairing of the letters of W. 
Thus Genus (w) can be computed as the minimum of the genera 6f the surfaces 
associated with orientable pairings of the letters of W. 0 

2.2 THEOREM. There is an effective procedure for computing Sq(w) for any element 
IV E F, such that w is a product of squares. 

Proof. Let W be the reduced cyclic word which represents [w]. As in Theorem 2.1 
we can compute x(w) as the maximum of the euler characteristics of the surfaces 
associated with pairings of the letters of W. It may happen that one of these surfaces 
with euler characteristic equal to x(w) is not orientable (i.e. not associated with an 
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orientable pairing). In this case Sq(w) = - 2 - x(w). Otherwise, it is claimed, Sq( w) = 

1 -x(w). 
It is clear that Sq(w) 2 2 - x(w). Thus the claim will be proved by exhibiting a map 

f :p*-*(al) +I’, such that the restriction of f to the boundary represents [WI. Let S be an 
orientable surface with x(S) = x(w) and let g:S + Ir be such that g/as represents [WI. 

Since S is the quotient of Pz_x(,,,’ obtained by identifying an appropriate moebius strip 
to a point, we may take f to be the composition of g with the quotient map. fl 

2.3 Remarks. (1) It follows from 01 that an element w E F, can be written as a 
product of squares if and only if the word for w has even exponent sum in each letter. 

(2) Theorems 2.1 and 2.2 generalize work of Wicks[6] who showed that w E F, 
is a commutator iff [w] is represented by a reduced cyclic word of the form 
XYZX-’ Y-‘Z’. This implies that there is an effective procedure for deciding if w is a 
commutator. In 03 we will see that there are “standard forms” analogous to 
XYZX-‘Y-‘2-l for elements of higher genus. 

Algorithms for deciding if an element of a free group is a product of n com- 
mutators or a product of n squares were discovered independently by Edmunds [2,3] 
Goldstein and Turner [7] and Culler [8]. 

2.4 Star graphs. Let S be a surface with one boundary component and let f: S + I, 
be a tight map. Suppose that W is the cyclic reduced word corresponding to fins, and 
that p is the pairing of the letters of W induced by f. Number the letters of W 
consecutively using the integers mod 1 WI so that W = LoLl . . . L,wi+l. We can then 
describe p as an involution of the set (0, 1, . . . ,( WI - 1). 

If we cut S along the arcs f-’ 
( > 

b pi then we obtain a surface S’, each component 
i=l 

of which is a disk. The boundary of each disk consists alternately of arcs which come 

from JS and arcs which come from f-’ ( > 6 pi . Let A( W, p) be the l-complex obtained 
i=l 

by collapsing each arc of as’ which comes from f-’ 
( ) 

bp; to a point. 
i=l 

We can describe A( W, p) as the directed graph defined as follows. Consider the set 
R of ordered pairs (k, p(k)). The involution p induces an involution on LR which carries 
V, = (k, p(k)) to V;’ = (k, p(k))-’ = (p(k), k) = VP,,,. We take Sz as the set of vertices 
of A( W, p). Each Lk = XT; for some ik and some ek = ? 1. For each k, A( W, p) has an 
edge ek running from vk_’ t0 vk. 

The star graph of W, which was invented by Whitehead [9], is the directed graph 
C(W) defined as follows. The vertices of 2(W) are the letters X;‘, . . . , X:‘, and there 
is an edge from Y to Z-’ for each occurrence of YZ as a subword of W. The star 
graph of W can be obtained from A( W, p) by identifying the vertices by mapping V,” 
to XE’. 

Thus x(S) = d - 1 W//2, w h ere d is the number of components of A( W, p). Each 
component of A( W, p) corresponds to a cycle in z(W). Each edge of x(W) occurs in 
exactly one such cycle. Also, if S is orientable then the cycles can be oriented 
consistently with the orientation of the edges of C(W). 

2.5 Example. Certain words admit only one pairing of their letters, making our 
algorithms especially easy to apply. Situations of this type give immediate proofs that 
if al, bl,. . ,a,, 6, are elements of a basis of a free group, then 

Genus ([al, b,] . . . [a,, b,]) = n [lo] 
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and 

%(]a,, b,l . * . [a,, b,]) = 2n + 1 [lo, 111. 

2.6 Example. More surprising examples are provided by the words [X, Y]” where 
X and Y are basis elements in a free group. We will show that Genus ([X, Y]“) = 
[n/2] + 1 where [ ] denotes the greatest integer function. 

Suppose first that n is odd. Consider the pairing p defined by 

-k (mod 4n) if k is odd 
p(k) = {2n - k (mod 4n) if k is even. 

Since n is odd, p defines an orientable pairing, and it is easily checked that 

A([X, Y]“, p) has n components. No more than n components could be obtained with 
any orientable pairing because any cycle in the star graph of [X, Y]” which can be 
oriented consistently with the orientation of C([X, Y]“) must 
It follows that Genus ([X, Yl”) = (n + 1)/2 if n is odd. 

If n is even one can still show by appealing to the 
([X, Y]“) 2 (n + l/2). Since genus must be an integer, Genus 
the other hand, 

involve at least 4 edges. 

star graph that Genus 

([X, Y]“) 2 (n/2) + 1. On 

Genus ([X, Yl”) 5 Genus ([X, Yin-‘) + Genus ([X, Y]) 

=;+I. 

Formulas for the commutators involved in a minimal expression for [X, Y]” as a 
product of commutators can be determined. One constructs the surface associated to 
p and carries out the algorithm for classifying surfaces while keeping track of the arcs 

in the inverse image of Upi. This produces some peculiar commutator identities. For 
i=l 

example, 

[X, Y13 = [XYX-‘, Y-‘XYX-*I [ Y_‘XY, YZ]. 

(See 4.2 and Fig. 3) 

13. STANDARD FORMS 

Suppose that lJ is a reduced cyclic word in the generators {Y,, . . . , Y,,}. Let W be 
a cyclic word which is obtained from U by substituting a reduced word 4( Yi)f for 
each letter Y;, E = + 1. We will say that W is obtained from U by a non-cancelling 

substitution if +(Yi) # 1 and there is no cancellation between +( yi)’ and &Yi>” 
whenever Y;Yf is a subword of W. 

We will call U a quadratic word if each generator Yi which appears in U appears 
exactly twice, each time as either Yi or YT’. If each Yi which appears in U appears 
exactly once as Yi and once as Y;‘, then U will be called an alternating word. We will 
call U a simple word provided that whenever Y:YF is a subword of U then Y;‘Y I’ 
is not a subword of U, and Y:YF appears only once in U. 

Wicks showed in [4] that if W is a commutator then W is obtained by a 
non-cancelling substitution from ABA-‘B-l or ABCA-‘B-‘C-‘. We will show that 
there are analogous “standard forms” for elements of higher genus and for products 
of squares. Our theorem is related to a theorem of Edmunds [4,5]. 

3.1 THEOREM. Let W be a reduced cyclic word. If Genus (W) = n, then W is 
obtained by a non-cancelling substutution from a simple alternating word U with 
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Genus (U) = n and IUI 5 12n - 6. If Sq( W) = n > 1, then W is obtained 
cancelling substitution from a simple quadratic word U with Sq( U) = n 

6n -6. 
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by a non- 

and (U[I 

proof. We will prove the theorem in the case where Genus (W) = n. The same 
method applies in the non-orientable case, but T,, must be replaced with a surface S 

such that x(S) = x(W). 

Let f: T,+T, be a tight map such that flilT, corresponds to W. Then f-’ 
( 1 

;pi cuts 
i=l 

T, into disks, and the boundary of each of these disks consists alternately of arcs in 

8s and arcs in f-’ LYJpi . 
( ) 

We distinguish two types of these disks-disks of type 1 
i=l 

being those whose boundary meets aT, in exactly 2 arcs, and disks of type 2 being 
those whose boundary meets aT,, in 3 or more arcs. Let d, and d2 denote respectively 
the number of disks of type 1 and type 2. 

Let A be the subset of T,, which is the union of all of the type 1 disks together with 

all of the arcs of f-’ 
( ) 

6 pi which are on the boundary of two disks of type 2. Let N 
i=l 

be a closed regular neighborhood of A. Then each component of N is a disk which 
meets aT, in two arcs. These arcs correspond to subwords of W and every letter of 
W corresponds to a point on the boundary of some component of N. Also, the two 
arcs of aT, which are contained in the same component of N correspond to inverse 
words. If we number the components of N and label the two arcs of aT,, in the ith 
component as Yi and Yi’, then we can define U to be the word obtained by listing the 
arcs of N fl JT,, in order as we go around JT,,. Clearly W is obtained by a 
non-cancelling substitution from U and Genus (U) = n. It is also clear that U is a 
simple alternating word. 

To estimate the length of U we note that the number of components of N is at 
most 3dJ2, so ) UJ 5 3dz. Also, since ) WI 2 2dI + 3d,, 

n = Genus (W) = i( 1 - d, - d2 + $ WI) 

Thus d2 5 4n - 2, and 

JUj<3dz<3(4n-2)= 12n-6. Cl 

3.2 Remarks. (1) It follows from Theorem 3.1 that any simple alternating word of 
genus n has length at most 12n - 6. Similarly, every simple quadratic word U with Sq 

(U) = N > 1 has length at most 6n -- 6. 
(2) If Genus (W) = 1 or Sq( W) = 2 the number of standard forms is small enough so 

that we can list all of the possibilities. If Genus ( W) = 1, we obtain the two forms found 
by Wicks. If Sq ( W) = 2 then W is obtained by a non-cancelling substitution from one of 
the four cyclic words AABB, ABA-‘& ABCA-‘CB, or AABCCB-‘. In both of these 
cases the surfaces involved have euler characteristic - 1, and hence contain at most two 
disks of type 2. (See Fig. 2.) 

3.3 COROLLARY. If w E [F,, F,], then Genus (wp)+x as p-+00. 

Proof. Let W be a cyclically reduced word which is conjugate to w. Then WP is 
cyclically reduced and conjugate to w p. It is not hard to show that if V and V-l are 
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ABA-‘8 

ABC A-‘8“~-’ 

A BC A-%8 

AA88 A ABCC@- 

Fig. 2. Possibilities for the inverse image of U pi under a tight map : T, + F, or : P2 + r,. 
i=l 

both subwords of Wp, then /VI < (W)/2. Th’ IS implies that if Wp is obtained by a 
non-cancelling substitution from an alternating word U, then jU\ > 2~. Therefore 

Genus (wp) >e+l 0 
6 2’ 

3.4 If 4 is any automorphism of F, then Genus (d(w)) = Genus(w) for any 
w E [F,, F,]. In view of this fact, Corollary 3.3 provides information about automor- 
phisms of F,. For example, we can see that if u and u are elements of [F,, F,] and 
u# 1, then there is no automorphism of F, which sends u to uu and fixes 0. For if 
4 E Aut(F,) is such that d(u) = uv and 4(v) = ~1, then 4p(u) = uvp. This is impossible 
since an obvious modification of the argument used in the proof of 3.3 shows that 
Genus (uup)+~ as p+m. These ideas will be applied to the study of Aut (F,) in a 
future paper. 

04. THE EQUATIONS w = [(I,, &I * * . [(I,, 8.1 AND w = (I,* * - . aa2 

Let g be an element of a group G and let a((,, . . . ,&> be a word in the free group 
Q, with generators &, . . . ,&,,. Define a solution to the equation g = fl to be a 
homomorphism 4:@+G such that +(a) = g. An m-tuple (u,, . . . ,u,) of elements of G 
satisfies g = n<u,, . . . ,u,) if and only if (~1,. . . a,,,)= (4(&),. . . ,c#J(&)) for some 
solution 4 of the equation g = a. 

If 4 is a solution to g = R and if (Y E Aut (a) fixes R, then &YY is also a solution. 
Thus the stabilizer of Sz in Aut (Q) acts on the set of solutions to g = a. We will call 
the orbits under this action the stabilizer orbits of solutions to the equation g = R. 

A theorem of Hmelevskii [12] which was sharpened by Burns et al. [ 131, states that 
if w is an element of a free group then there are only a finite number of stabilizer 
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orbits of solutions to w = [a, p]. We will prove an analogous theorem for the 
equations w = [(Y,, p,] * * . [an, P,,] and w = (Y,*. . . a,‘. 

An example of Lyndon and Wicks [14] shows that, even under the action of a 
larger group than the stabilizer of IV, there is generally more than one orbit of 
solutions. 

4.1 THEOREM. Let w be an element of F,. If Genus (w) = n then there are only a 
finite number of stabilizer orbits of solutions to w = [a,, /3,] * - * [a,, &I. If Sq (w) = n 
then there are only a finite number of stabilizer orbits of solutions to w = aI2 . . * a,,‘. 

Proof. We will prove the theorem in the case where Genus (w) = n. As usual, the 
non-orientable case is proved by the same method, but T, must be replaced with the 
appropriate surface S with x(S) = x(w). 

Let 2 be the set of solutions to w = [(Y,, /311* * * [a,, Pnl. Let Cp be the free group 

with generators aI, PI, . . . ,a,, Pn. Define an equivalence relation on Z by 4 - JI iff 
4 = ~OC#P(Y, where (Y is an automorphism of @ which fixes [(Y,, p,] * * * [a,, Pn] and 7~ is 
an inner automorphism of F,. We claim that each equivalence class is the union of 
a finite number of stabilizer orbits. For if 77 is an inner automorphism of F, such that 
C#J and 7704 are both in C, then 77 must be conjugation by an element of the centralizer 
of w. The centralizer of w is a cyclic group which acts transitively (by conjugation) on 
the stabilizer orbits in each equivalence class. The claim then follows from the 
observation that conjugation by w fixes each stabilizer orbit. 

We must now show that 2 contains only a finite number of equivalence classes. 
Let W be a reduced cyclic word which represents [w]. We can associate to each 
solution of w = [(Y,, PI] . . . [a,, Pn] an orientable pairing of the letters of W. This is 
done by choosing a base point * on JT,, and identifying r,(T,,,*) with @ so that a curve 
going around dT, corresponds to [(Y,, p,] * . * [a,,&]. Then for any solution 4:@+F, 
there is a mpa f: T,+T, so that f*:r,(T,,) = @+7r,(I’,> = F, is equal to 4. The map f is 
homotopic to a tight map which in turn induces an orientable pairing of the letters of 
W. It follows from Theorem 1.7 that if C#J and IJ are solutions of w = s1 which are 
associated to the same pairing of W, then C#J - $. This implies that Z contains only a 
finite number of equivalence classes. q 

4.2 There is a procedure for constructing a solution to w = [(Y~, /?,I. . . [a,,, P,,] in 
each equivalence class-i.e. associated to each appropriate pairing of the letters of the 
reduced cyclic word W representing [WI. This amounts to constructing a surface from 
the pairing and then carefully carrying out the surface classification algorithm. 

It suffices to find a solution, associated to the given pairing p, of an equation 
w’ = [a,, p,]. . . [a,, /3”] where w’ is conjugate to w. Suppose that Genus(w) = n, and 
let f: T,,+T, be a tight map such that f laTn represents [w] and such that f induces p. To 
find the solution we will construct loops ulr T,, . . . ,un, T, in T,, based at a point * E T,, 
so that the loop v,T~u,-‘T,-‘. . . -I 

U”Tr#ff” 7” 
-I . IS freely homotopic to dT,. We then will 

take ai = f*(si) and /3i = f*(ti) where Si and ti are the homotopy classes of ai and Ti 
respectively. 

Since the arcs of f-’ 
( > 

6pi cut T,, into disks, we may view T,, as being obtained 
i=l 

by identifying various edges of a family of polygons. These polygons and the 
identifications can be determined from W and p. Each of the edges along which 
identifications are to be made is labeled with one of the letters X,, . . . ,X, and has a 
specified normal direction which is pulled back from the orientation of the edges of I,. 
These labels and normal directions are also determinable from W and p. 

We can make some of the identifications to obtain a single 8n-gon D. Every 

TOP Vol. 20. No. 2-C 
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second side of D corresponds to an arc of aT,, while the remaining 4n sides are 

identified in pairs according to a certain word. The arcs of f-r 
( > 

6 pi corresponds to 
i=l 

the arcs of aD which are to be identified and to those arcs which have already been 
identified. 

Next we perform cut and paste operations, as in the surface classification al- 
gorithm, to obtain an Sn-gon D’ such that T,, is obtained by identifying alternate sides 
of D’ according to the word [A,, B,] . . . [A,, II,]. At each step we must keep track of 

the arcs of f-’ 6 pi 
( > 

and of their normal directions. 
i=l 

Choose a basepoint * in D’. The loops (TV, T,, . . . ,a,,, T,, are the images in. T, of arcs 
joining * to the midpoints of the edges of D’. The words ai = f*(s) and pi = f*(ti) are 

obtained by listing the intersections of vi and Ti with the arcs of f-’ ;pi . This 
( > i=l 

procedure is carried out in Fig. 3 for the word [X, Y13 and the pairing p given in 2.6. 
A similar procedure exists for constructing a solution to w = a~,‘. . . an*. 

d-. 

Fig. 3. Cutting and pasting to derive [X, Y]’ = [XYX-‘, Y-1XYX-2][ Y-‘XY, Y2]. Bold lines 
correspond to arcs of f-‘(PI U P2); Straight segments are cut edges. W corresponds to 

[c*. d*][e*, b*]. 

55. FREE PRODUCTS 

Let U and V be groups and let g be an element of the free product U * V. Under 
suitable conditions on U-and V our topological methods can be used to give procedures 
for computing Genus (g) and Sq (g). We will sketch brieffy how this is done. 

If g1,. . . ,& are elements of a group G we define Genus (g,, . . . &) to be the least 
integer n such that there exist elements x2,. . . ,xk and al, b,, . . . ,a,, b, of G with 
g,x*g,x;’ - - - x&x;’ = [a,, b,] . - * [a,, b,]. We define Sq (g,, . . . ,gk) to be the least 
integer n such that there exist elements x2,. . . ,xk and al,. . . ,a, of G such that 
g,xlg;rx;’ ’ * * x&x;’ = a,* * - * a, . ’ In order to be consistent with the topology, we 
will say that Genus (g,, . . . ,gk) = 0 if there exist elements x2,. . . ,& of G such that 
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g,xzg*x;’ * * * X&X,’ = 1. On the other hand, if there exist x2,. . . ,x, in G such that 
g,x2g5’x;’ . . . x&x;’ = 1, then Sq (g,, . . . ,gk) = 1. 

We will say that k-Genus (or k-Sq) is computable in G if there is an effective 
procedure for determining whether Genus (g,, . . . ,gk) (or Sq (g,, . . . ,gk)) is defined, 
and if so computing it, for all k-tuples of elements of G and all k. We remark that 
k-Genus and k-Sq are computable in a free group. This can be proved by applying the 
techniques of this paper to surfaces with k boundary components. 

By a cyclically reduced word in U*V will be meant an element of the form 
UlUl . . . u,z), or ulul . . . v,u, where 1 # Ui E 17 and 1 # Vi E V. Every nontrivial element 
of U*V is conjugate to a cyclically reduced word which is unique up to a cyclic 
permutation of the “letters.” The set of all cyclically reduced words conjugate to an 
element g E U* V will be called the reduced cyclic word representing [g]. It is 
meaningful to talk of the letters of a reduced cyclic word, and the letters have a 
well-defined order. The nodes of a reduced cyclic word W are the ordered pairs 
(X, Y) where X and Y are consecutive letters of W with X preceding Y. A node 
(X, Y) has positive sign if X E U and Y E V. If X E V and Y E U then (X, Y) has 
negative sign. 

5.1 THEOREM. Let U and V be groups. If k-Genus is computable in U and V, then 

it is computable in U*V. If both k-Genus and k-Sq are computable in U and V, then 
both are computable in U*V. 

Sketch of proof. We sketch a proof of the computability of k-Genus. The second 
statement is proved by an analogous method, using surfaces which need not be 
orientable. 

Let K, and K, be spaces with fundamental groups U and V respectively. Form a 
space K with T,(K) = U* V by identifying the base points of K, and K, to a point p. 
We may assume that p has a neighborhood homeomorphic to an interval. 

Let gl, . . . ,& be elements of U* V with Genus (g,, . . . &) = n. If S is an orientable 
surface of genus n with k boundary components, then there is a map f :S+ K such 
that the restriction of f to the ith boundary component represents [gi]. As in 01 we 
can make f transverse to p, arrange that the arcs of aS between points of f-‘(p) are 
mapped to loops in K which are not null-homotopic, and eliminate the simple closed 
curves in f-‘(p). Then f-‘(p) consists of arcs which cut S into surfaces, although these 
need not be disks. 

Let WI,.. . ,wk be reduced CyCliC words repreSenting [g,], . . . ,[gk] respectively. 
The ith component of aS is divided into arcs by the points of f-‘(p), and these arcs 
are mapped to loops in K, or K, which represent the letters of Wi. The points of 
F-‘(p) on the ith component of 8S correspond to the nodes of Wi. 

We can construct S by taking an annulus for each component of as, attaching 
l-handles to these annuli, and then attaching surfaces to the boundary of the resulting 
space. The core of each l-handle is an arc of f-‘(p), and its attachment is determined 
by the signs of the nodes corresponding to the endpoints of the arc. The surfaces are 
mapped by f into either K, or K,. The genus of each of them must equal the genus of 
the tuple of elements of U or V corresponding to the images of its boundary 
components. 

Consider all the surfaces obtained by copying this construction-using any pairing 
of the nodes of W,, . . . ,wk to specify the attachment of the l-handles, and any 
appropriate way of attaching orientable surfaces of minimal genus. There are only a 
finite number of surfaces obtained this way. We can determine which of them are 
orientable from the pairings and we can compute the genera of the orientable ones 
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since &-Genus is computable in U and V. Since S has this structure, we can compute 
Genus (gl, . . . ,gk) as the minimum of the genera of such surfaces. q 

5.2 Remark. It can be seen from the proof of Theorem 5.1 that in order to decide 
if g E U* V is a product of n commutators we need only be able to decide if 

Genus (g,, . ..,gL)d+ 

for 81,. . . ,gk E u or gl,. . . ,gk E V. Thus to decide if g is a commutator we need to be 
able to solve the conjugacy problem in U and V and to decide if an element of U or 
V is a commutator. 

5.3 One can obtain standard forms for cyclically reduced words g E U* V with 
Genus (g) = II or Sq (g) = n. Wicks has listed the standard forms for commutators and 
for products of 2 squares [6,9]. To derive the standard forms in the general case we 
let S be T,, or P., and let f: S + K be as in the proof of Theorem 5.1. We then coalesce all 
of the type 1 disks in S as we did in Theorem 3.1. 

Fig. 4. A possibility for f-‘(p), f: T,+ K. 

We will leave the reader with the project of describing the standard forms for 
elements of a given genus in a free product. For the sake of illustration we will derive 
one of the many forms for elements of genus 3. If f-‘(p) is as shown in Fig. 4, then g 
is conjugate to a reduced word of the form 

where x1, x2, xj, x5, x6, and x7 are elements of U with x1x6x3 COUjUgatC to x;‘x;‘x;‘, 

and x4 and x8 are elements of V such that x4x8.is a commutator in V. 
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