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INTRODUCTION 

The e-thin part of a hyperbolic manifold, for an arbitrary positive number 
e, is defined to consist of all points through which there pass homotopically 
nontrivial curves of length at most e. For small enough e, the e-thin part is 
geometrically very simple: it is a disjoint union of standard neighborhoods of 
closed geodesics and cusps. (Explicit descriptions of these standard neighbor-
hoods are given in § 1.) If e is small enough so that the e-thin part of M has 
this structure then e is called a Margulis number of M. There is a positive 
number, called a 3-dimensional Margulis constant, that serves as a Margulis 
number for every hyperbolic 3-manifold. 

The results of this paper provide surprisingly large Margulis numbers for a 
wide class of hyperbolic 3-manifolds. In particular, we obtain the following 
result, which is stated as Theorem 10.3: 

Let M be a closed orientable hyperbolic 3-manifold whose first Betti number 
is at least 3. Then log 3 = 1.09... is a Margulis number for M. 

Knowing a Margulis number for a given manifold provides important geo-
metric information. For example, one can give an estimate of the volume of 
a hyperbolic manifold M in terms of a Margulis number e for M. One first 
observes that M must contain a hyperbolic ball of radius e12; indeed, any 
point in the thick part of M is the center of such a ball. The volume of this 
ball is a lower bound for the volume of M. This bound can be improved by 
using an observation of Meyerhoff's [Me]: the ratio of the volume of M to 
that of the ball is at least d(eI2) , where d(r) is an explicitly given function 
that, by a theorem of Boroczky, is a bound for the local density of a radius 
r sphere-packing in hyperbolic space. This technique gives Corollary 10.4 to 
Theorem 10.3: 

Let M be a closed orientable hyperbolic 3-manifold whose first Betti number 
is at least 3. Then M contains a hyperbolic ball of radius 1 log 3 = .54. .. and 
the volume of M is greater than .92. 
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232 MARC CULLER AND P. B. SHALEN 

The estimates given by the above results should be compared with other 
known estimates and with known examples. The greatest known lower bound 
for the volume of an arbitrary closed orientable hyperbolic 3-manifold, due to 
F. Gehring and G. Martin [GeM], is .00115, improving an earlier estimate of 
.00082 by R. Meyerhoff. The smallest known orientable hyperbolic 3-manifold 
in terms of volume was discovered by J. Weeks; it has Betti number 0 and 
has a volume of approximately .94. A result of Shalen and Wagreich [ShW] 
implies, for a 3-manifold M satisfying somewhat weaker hypotheses than those 
of Theorem 10.3, that! log 3 is a Margulis numberfor M (so that M contains 
a hyperbolic ball of radius * log 3). 

It can be proved that log 3 is not a Margulis number for the complement of 
the figure 8 knot, and hence that it is not a Margulis constant. Furthermore, 
there is overwhelming evidence, based on computer experiments by C. Hodgson 
and J. Weeks, that the largest hyperbolic ball in the Weeks manifold has radius 
.51 ... < ! log 3. Thus Theorem 10.3, and-according to the experimental 
evidence-Corollary 10.4 as well, become false if one drops the topological 
restrictions on the manifold. 

Theorem 10.3 is an application of a theorem on 2-generator Kleinian groups. 
We may regard the orientable hyperbolic 3-manifold M as the quotient of 
the hyperbolic 3-space H3 by a discrete group r of orientation-preserving 
isometries; from this point of view, e is a Margulis number for M if and 
only if, for any two noncom muting elements ~ and '1 of r, every point of H3 
is moved a distance at least e by either ~ or '1. 

A 3-manifold is said to be topologically tame if it is homeomorphic to the 
interior of a compact 3-manifold; a torsion free Kleinian group r is topologi-
cally tame if H 3/r is topologically tame. We shall prove the following result, 
which is a stated as Theorem 9.1: 

Let ~ and '1 be noncommuting isometries of H3. Suppose that ~ and '1 
generate a torsion free discrete group that is topologically tame, is not cocompact, 
and contains no parabolics. Then every point of hyperbolic space is moved a 
distance at least log 3 by either ~ or '1; that is, we have 

max(dist(z, ~. z), dist(z, '1' z)) ~ log3 

for any z E H3 . 

In §1O we show (Proposition 10.2) that if M = H3/r has first Betti number 
at least 3 then every two-generator subgroup of r is noncocompact and topo-
logically tame. Thus Theorem 9.1 on two-generator groups implies Theorem 
10.3 about Margulis numbers. 

It is conjectured that any hyperbolic 3-manifold with finitely generated fun-
damental group is topologically tame. If this were true it would allow one to gen-
eralize the above result about Margulis numbers to any hyperbolic 3-manifold 
whose fundamental group has no 2-generator subgroup of finite index. 

We now describe the ingredients of the proof of our main theorem. The 
proof begins with the observation (Proposition 9.2) that if ~ and '1 are non-
commuting isometries of H3 and if the group that they generate is torsion free, 
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is not cocompact, and contains no parabolics, then it is free of rank 2. 
One novel feature of the proof is the use of a construction, due to Patterson 

and studied extensively by Sullivan, of a geometrically natural measure on the 
limit set of a Kleinian group. We use such a measure to relate the combina-
torial structure of the free group of rank 2 to its action on its limit set. This 
part of the argument bears an intriguing resemblance to the construction of a 
decomposition of the sphere in the Hausdorff-Banach-Tarski paradox [Wag]. 
By viewing the free group of rank 2 as a set of reduced words in the alphabet 
{x , y, X -I , Y -I} , one obtains a decomposition of the group into four infinite 
sets and a singleton {I}, where each of the infinite sets consists of all words 
beginning with a given letter. This decomposition has the peculiar property 
that each of the infinite sets is mapped onto the complement of another of the 
infinite sets under left multiplication by a certain letter. For example, left mul-
tiplication by x -I sends a word that begins with x to a word that does not 
begin with X-I. 

In the Hausdorff-Banach-Tarski construction one has a rank-2 free group 
acting by isometries on the sphere. A choice of a point in a given free orbit 
determines an identification of the group with the orbit and hence induces a 
decomposition of the orbit. By choosing a point from each orbit one obtains 
a decomposition of the sphere (ignoring the countable subset of points with 
nontrivial stabilizer). Since in this situation the group action preserves the area 
measure of the sphere, one obtains a paradoxical conclusion. 

In our situation we have a free group of rank 2 acting by isometries on 
hyperbolic space, and hence acting by Mobius transformations on the sphere 
at infinity. Using a generalization of Patterson's construction we are able to 
construct a measure on the limit set of our group that decomposes as a sum 
of four measures, each of which is transformed to the complement of another 
by a generator or the inverse of a generator. The key to this construction is 
the fact that the Patterson measures are obtained as limits of measures that are 
supported on an orbit of the group, and hence reflect the combinatorial structure 
of the group itself. It is necessary here to identify the group with an orbit by 
making a choice of a point z in hyperbolic space. 

This construction is especially interesting in the case where the Patterson mea-
sure that admits the decomposition is equal to the area measure on the sphere at 
infinity. (Here the sphere is given the round metric obtained by identifying H3 
with a ball so that the given point z is the center, and the area measure is nor-
malized so as to have total mass 1.) In this case the "paradoxical" decomposition 
leads to an elementary proof of the inequality max( dist( z , ~ . z) , dist( z , 11· z)) 
2: log 3. By symmetry considerations together with a measure-theoretic lemma, 
one obtains a subset of the sphere that has area at most t but whose image 
under one of the generators has area at least i. A direct computation then 
shows that this element moves the center a distance at least log 3 . 

Given a Patterson measure associated to a discrete group r, one can con-
struct a positive, r-invariant (generalized) eigenfunction of the hyperbolic 
Laplacian by integrating the hyperbolic Poisson kernel against the measure. This 
eigenfunction has a positive eigenvalue and, therefore, determines a 
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superharmonic function on H 3/r (which is a hyperbolic manifold if r is 
torsion free). This allows one to prove that if every superharmonic function 
on H 3/r is constant then the area measure is the unique Patterson measure 
associated to r. 

An argument due to Thurston shows that certain geometric conditions on 
the ends of a complete hyperbolic manifold M = H 3/r imply that all positive 
superharmonic functions on M are constant. In our setting the appropriate 
condition is that there exist a sequence of singular surfaces having metrics of 
intrinsic curvature :::; -1 and bounded genera, such that every compact subset 
of M is "enclosed" in a homological sense by a surface in the sequence. By a 
theorem of Canary's, such a sequence exists if r is topologically tame, contains 
no parabolics and has limit set equal to the entire sphere at infinity of hyper-
bolic space. Thus we need only to establish the inequality in the conclusion of 
Theorem 9.1 in the case that the limit set of r is a proper subset of the sphere 
at infinity, i.e., when r has nonempty set of discontinuity. 

Notice, however, that if the set of discontinuity is non empty then the area 
measure cannot be a Patterson measure. Our strategy is to reduce the case where 
r has nonempty set of discontinuity to the more exotic case where the area 
measure is a Patterson measure by considering limits of groups with nonempty 
set of discontinuity. There is an open subset Qj~ of the variety PSL2 (C) x 
PSL2(C) consisting of all pairs of elements (~,,,) such that (~,,,) is a free 
group of rank 2 having a nonempty set of discontinuity and containing no 
parabolics. If (~, ,,) is any point in the closure Qj~ (in the complex topology) 
of Qj~, then (~,,,) is still free and discrete. It is easy to show that for any 
point Z E H3 the function (~,,,) 1--+ max(dist(z, ~ . z), dist(z, " . z» is a 
proper continuous function on Qj~ with no local minimum on Qj~. Hence it 
takes a minimum value at some point (~,,,) in the frontier IJ3 of Qj~. This 
reduces the proof of the inequality max( dist( z , ~ . z) , dist( z , ". z» :::: log 3 for 
the case (~, ,,) E Qj~ to the proof in the case (~, ,,) E 1J3. We then complete the 
proof by showing that there is a dense Go in IJ3 consisting of points for which 
the area measure is indeed a Patterson measure. We use Thurston's criterion 
here as well; we show that, for (~, ,,) in a dense Go subset of 1J3, there exists 
a sequence of negatively curved singular surfaces of bounded genera enclosing 
every compact set in H3 /(~, ,,). The proof of the existence of this dense Go 
contains much of the technical work in the paper. 

Each of the singular surfaces that we construct is a map of a closed surface 
into M = H3 / (~ , ,,). The domain surface is divided into "pairs of pants" by 
a family of "waist" curves that are mapped to closed geodesics in M. Further-
more, the surfaces in the sequence are girded in the sense that the lengths of 
the waist geodesics tend to 0 through the sequence. The existence of a sequence 
of singular surfaces of this type is proved by means of a recent result of Curt 
McMullen's asserting the density of maximal cusps in 1J3. The singular surfaces 
are chosen to be invariant with respect to a canonical involution of M; such 
an involution exists because 7r\ (M) is a 2-generator group. By combining this 
invariance property with the fact that the waist lengths tend to 0, we show that 
any compact subset of M is enclosed by some surface in the family. 
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Our construction of girded surfaces works only in the 2-generator case be-
cause it uses the involution. However, we believe that a similar picture holds 
more generally. Let r be any geometrically finite Kleinian group without 
parabolics, and let M be the manifold defined by a generic point in the fron-
tier of the set of quasi-conformal deformations of r. We conjecture that M 
is girded, meaning that there exists a sequence of girded surfaces in M such 
that every compact subset of M is enclosed by a surface in the sequence. For 
a precise definition of a girded manifold, see 7.4. 

It is worth noting that the singular surfaces that appear in the proof of 
Canary's theorem are not required to contain short geodesics. In general a 
topologically tame manifold with geometrically infinite ends need not contain 
arbitrarily short geodesics, and thus need not be girded. Conversely, it is not 
clear in general whether a girded manifold with finitely generated fundamental 
group is topologically tame. 

The paper is organized as follows. In the first section we establish notation 
and collect the basic facts about hyperbolic manifolds that will be needed in 
the paper. The next two sections discuss the correspondence, via the Poisson 
kernel, between measures on the sphere at infinity and eigenfunctions of the 
hyperbolic Laplacian in a r-equivariant setting. In essence this material is 
classical potential theory, with the Poincare ball replacing the Euclidean ball. 

In §4 we present Patterson's ideas in a generalized setting to give a construc-
tion of a r-invariant conformal density that respects a given decomposition of 
a discrete group r. Section 5 contains the argument that is used in proving 
the main estimate in the case where the area measure is the unique Patterson 
measure. In §6 we describe Thurston's geometric criterion that implies that ev-
ery positive superharmonic function is constant. We introduce the notion of a 
Bonahon surface and formulate the criterion in terms of these surfaces. 

In §7 we develop the notions that we use in constructing our girded surfaces. 
Section 8 contains the proof of the existence of a dense Go in !B consisting 
of girded groups. In §9 we prove the main theorem, and in §10 we give the 
applications to closed manifolds. 

The preprint of this paper contains a more self-contained and detailed discus-
sion of the topics in §§4 and 6 of the current version. In addition the preprint 
contains a full development of the geometry of ultra-hyperbolic surfaces. The 
point of view taken in the preprint is somewhat different from the one taken in 
[Bo], being based on "packing" arguments similar to some that have been used 
by Thurston and Gromov. 

1. HYPERBOLIC SPACE AND DISCRETE GROUPS 

We establish some notation and conventions that will be used throughout the 
paper. 

1.1. Hyperbolic space. Whenever we consider a metric space, we shall write 
dist(x, y) to denote the distance function, provided that no confusion can 
result. In a metric space we also write dist(x, S) to denote the distance from a 
point x to a closed set S . If S is a subset of a metric space and r is a positive 
number, we shall denote the closed r-neighborhood of S by nbhd,(S). 
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By a model of hyperbolic n-space, for n 2:: 2, we shall mean a complete, 
I-connected Riemannian n-manifold of constant sectional curvature -1. 
Throughout this paper we shall fix, abstractly, a model H n of hyperbolic space. 
Any two models of hyperbolic n-space are isometric, and the isometry group of 
any model acts transitively on its orthonormal frame bundle. It will frequently 
be useful to identify H n , via a suitable isometry, with one of the standard con-
crete models. The concrete models that will be used most often are the upper 
half-space model, which has underlying space Rn - I x [0, 00) , and the Poincare 
model, for which the underlying space is the open unit ball B n E Rn. The 
geodesics in these models are intersections with lines or circles in the ambient 
euclidean space that are orthogonal, respectively, to the plane xn+1 = 0 or the 
unit sphere. In studying convex sets in H n it is useful to consider the projective 
model, which also has underlying space B n , but with a metric for which the 
geodesics are intersections of euclidean geodesics with Bn. For detailed de-
scriptions of these spaces, and for general information on hyperbolic geometry, 
the reader is referred to [F]. 

The sphere at infinity of H n will be denoted by S::O-I or simply Soo. The 
canonical compactification of H n , of which Soo is the boundary, will be de-
noted H n • Any self-isometry y of H n extends to a conformal automorphism 
of H n , which we denote y. We denote by y 00 the conformal automorphism 
of Soo obtained by restricting y. 

Given any point Z E H n , there exists an isometry h from Hn onto the 
Poincare model B n that maps z to o. Furthermore, h is unique modulo 
composition with orthogonal linear transformations of Rn. It follows that if 
we pull back the metric of Sn-I = 8Bn via Ii, we obtain a metric on Soo that 
is uniquely determined by the point z; we call it the round metric centered at 
z. 

Any isometry h of the upper half-space model onto Hn extends uniquely to 
a conformal diffeomorphism of Rn - I x [0, 00) onto H n - { 0 , where , E S 00 is 
a point determined by h. We shall say that h maps 00 to , (or that h -I maps 
, to 00). Given any point' E Soo' there exists an isometry of Rn- I x (0, 00) 
onto H n that maps 00 to ,. 

If A I and A2 are points of H n and B is a point of H n , we denote by 
LAIBA2 the angle between the ray from B to Al and the ray from B to A 2 ; 
here by the ray from B to Ai we mean the (hyperbolic) ray starting at Band 
passing through Ai (if Ai E Hn) or having Ai as an end point (if Ai E Soo). 

1.2. Convexity. A subset K of H n is termed convex if K i= 0 and if every 
line segment in H n with end points in K is itself contained in K; here a 
"line segment" may be an entire line or a half-infinite ray. The convex hull of 
a nonempty subset X of H n is defined to be the intersection of all convex 
subsets of H n containing X and will be denoted hull(X). We set hull(X) = 
hull(X) n H n . Clearly hull(X) and hull (X) are convex. 

Any isometry of H n onto the projective model Bn extends to a diffeomor-
phism of H n onto B n that maps convex subsets of H n onto convex subsets (in 

-n -n the usual Euclidean sense) of B . Hence any compact convex subset of H that 
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has non empty interior is homeomorphic to a closed n-ball. It follows that any 
closed convex subset of H n is the intersection of H n with a topological closed 
n-ball in H n and, therefore, is a contractible n-manifold-with-boundary. 
Proposition. If K is a convex subset of H n , then for any positive number R the 
set nbhdR(K) is convex. 
Proof. It suffices to show that if 0: C Hn is a compact line segment then 
nbhdR(o:) is convex. This is, in tum, equivalent to showing that for any line 
Ie H n the set InnbhdR(o:) is connected. If ¢: H n ~ R is the continuous func-
tion that assigns to each point of Rn its minimum distance from 0:, we have 
In nbhdR (0:) = (¢ II) - 1([0, R)). It therefore suffices to prove that the function 
¢ II has no local maximum. This is an exercise in hyperbolic geometry, which 
we leave to the reader. 0 

1.3. Let Y be any nontrivial orientation-preserving isometry of H3. For any 
e > 0 let us write 

Ce(y) = {z E H3: dist(z, y. z)::; e}. 
If y is parabolic, i.e., if Yoo has a unique fixed point' E Soo' then Ce(y) is 

a closed horoball based at ,. 
If Y is loxodromic then y 00 has exactly two fixed points, say C and '+, in 

Soo' The line A joining C and '+ is by definition the axis of y, and y I A 
is a translation through some distance length(y). The distance from a point 
to its image under y depends on the twist angle of y as well as on length(y) 
and the distance of the point from the axis A. However, the following result 
is sufficient to permit us to describe Ce(y) in this case. 

Proposition. Let y be a loxodromic isometry of H3 with axis A. Then there is 
a monotonically increasing continuous function f = !'y: [0, 00) ~ [0, 00) such 
that dist(z, y. z) = f(dist(z, A)) for every point z E H n . 

Proof. Left to the reader. 0 

It follows from the above proposition that if y is loxodromic with axis A 
then we have Ce(y) = 0 for any e < length(y), and for any e ~ length(y) we 
have Ce(y) = nbhdo(Ay ) ' where J is a nonnegative number depending on y 
and e. (In the notation of the proposition we have J = !'y (e) .) 

1.4. By a Kleinian group we shall mean a discrete group of orientation-preserv-
ing isometries of H3 that is non elementary in the sense that it has no abelian 
subgroup of finite index. If r is a Kleinian group we shall write Ar for its 
limit set. 

When'r is a torsion free Kleinian group we shall write M(r) for the com-
plete hyperbolic 3-manifold H3 /r. The set hUll(Ar) is closed since Ar is com-
pact, and non empty since r is nonelementary. Thus the set nbhd I (hull(Ar)) c 
H3 is closed and has nonempty interior. It is convex by Proposition 1.2 and 
is clearly r-invariant. Hence by 1.2, nbhd J (hull(Ar)) is a contractible, r-
invariant 3-manifold-with-boundary. We shall write 

N(r) = (nbhd J (hull(Ar)))/r c M(r). 
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By the discussion above, N(r) is a 3-manifold-with-boundary and a deforma-
tion retract of M (r) . 

1.5. Margulis numbers. The group of all orientation-preserving isometries of 
H3 is isomorphic to PSL2 (C). In PSL2 (C), every element of order> 2 has 
an abelian centralizer. Hence if r is a torsion free Kleinian group, every non-
trivial element of r lies in a unique maximal abelian subgroup. If H is any 
maximal abelian subgroup of r then either H is cyclic and H - {I} consists 
of loxodromic elements with a common axis, or H is free abelian of rank 1 or 
2 and H - {I} consists of parabolic elements with a common fixed point in 
Soo. In the latter case H will be called a cuspidal subgroup of r. 

For any point P E M(r) we shall denote by short(P) the infimum of the 
lengths of all homotopically nontrivial loops based at P. Thus for any z E H3 
lying in the fiber above P we have 

short(P) = inf dist(z, Y • z). 
IhEr 

We have 0 < short(P) ::; 00 , and short(P) = 00 if and only if r = {I}. When 
r =f:. {I} , the infimum in the definition of short(P) is realized. For any interval 
I C (0, (0) we denote by M[(r) the set of all points P E M(r) such that 
short(P) E I. Thus for any e > 0, the set M(O,e] consists of all points of M 
through which there pass homotopically nontrivial closed curves of length ::; e . 
We call M(o,e] the e-thin part of M. 

Let M(o,e] denote the preimage of M(O,e] in Hn . Then by definition, M(O,e] 
consists of all points z E H3 such that dist( z , y. z) ::; e for some y E r - { 1 } . 
Hence we have 

M(O,e] = U Ce(y)· 
IhEr 

For any maximal abelian subgroup H of r and for any fixed e > 0, the 
family of sets {Ce (y): Y E q is totally ordered by inclusion. It follows from 
the discreteness of r that there is always a maximal set Ce(H) in this family. 
Thus for any e > 0 we may write 

M(o,e] = U Ce(H) , 
H 

where H ranges over all maximal abelian subgroups of r. The discreteness 
of r also implies that the sets Ce(H) form a locally finite family. A posi-
tive number e will be called a Margulis number for M(r) if the sets Ce(H) , 
where e ranges over the distinct maximal abelian subgroups of r, are pairwise 
disjoint. Equivalently, e is a Margulis number for M if for every point z E H3 
and every pair of noncommuting elements ~,Y/ of r, we have 
max( dist( z , ~ . z), dist( z , y/ • z)) ~ e. There exists a positive number that 
is a 3-dimensional Margulis constant in the sense that it is a Margulis number 
for every complete hyperbolic 3-manifold. The existence of such a constant 
follows, for example, from [Be, Theorem 5.4.5]. 

If e is a Margulis number for M then each component of M(O, e] has the 
form Ce(H)/ H for some maximal abelian subgroup H of r. When H is 
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cuspidal, SO that Ce(H) is a horoball, we call Ce(H)IH a standard cusp neigh-
borhood. When H consists of loxodromic elements, it is cyclic. In this case it 
follows from Proposition 1.3 that Ce(H) = 0 when e is less than the length 
of a generator of H, and that otherwise Ce(H) = nbhdo(A) , where A is 
the axis of a generator of Hand J is a nonnegative number depending on 
e and H. In particular, AI H is a simple closed geodesic of length :S e and 
Ce(H)1 H = nbhdo(AI H) . Topologically, g- = Ce(H)1 H is a solid torus unless 
AI H has length e, in which case g- = AI H. When H consists ofloxodromic 
elements and Ce(H) =I- 0, we call g- = Ce(H)1 H a tube. 

1.6. If f' is any Kleinian group and e is any Margulis number for M(1), we 
shall denote by M(~,e](1) the union of all components of M(o,e](f') that are 
standard cusp neighborhoods. We shall write 

M{~}(1) = 8M(~,e](1) c M{e}(1) 

and 
M[~,oo)(f') = M(f') - intM(~,e](1) :J M[e,oo)(f'). 

Furthermore, if I is any of the intervals (0, e], {e} , or [e, (0) , we set 

N/ (1) = N(1) n M/ (1). 

The preimage of N/ (1) in H3 will be denoted N/ (f') . 
For any Margulis number e, the set N~O,e](1) is a 3-manifold-with-boundary 

and a deformation retract of M~O,e](1). Indeed, each component of M(~,e](1) 
has the form Ce(H)1 H for some maximal abelian subgroup H of f' consisting 
of parabolic elements. The fixed point , E Soo belongs to Ar , and we have 
Ar =I- {O since f' is non elementary; hence hUll(Ar) n Ce(H) =I- 0. Since 
hUll(Ar) and Ce(H) are compact and convex, it follows that nbhd, (hull(Ar)) n 
Ce(H) is a closed convex subset of H3 with nonempty interior, and by 1.2 
is, therefore, a contractible 3-manifold-with-boundary. Hence the quotient of 
nbhd, (hull(Ar)) n Ce(H) by the action of H is a 3-manifold-with-boundary 
and a deformation retract of Ce(H)1 H; our assertion follows. 

1.7. Geometric finiteness. The Kleinian group f' is said to be geometrically 
finite if N[~,oo)(1) is compact for some Margulis number e. 

If f' is geometrically finite then it has only finitely many conjugacy classes of 
cuspidal subgroups. Indeed, if e is a Margulis constant, the sets Ce(H) , where 
H ranges over the cuspidal subgroups of f', form a locally finite family (1.5). 
Hence the corresponding cusp neighborhoods Ce(H)1 H form a locally finite 
family of subsets of M(f'). For each H the fixed point , of H belongs to Ar , 
and Ar =I- {O since f' is nonelementary; hence hUll(Ar) contains a geodesic 
with one end point at ,. It follows that (Ce (H) I H) n N[~, 00) (1) =I- 0 for every 
H. Hence if N[~,oo)(f') is compact then the family of cusp neighborhoods 
Ce (H) I H is finite, establishing our assertion. 

Lemma. Let H be a discrete group of parabolic isometries of the upper half 
space model of hyperbolic space, with common fixed point 00. Let A be a 
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closed nonempty H-invariant subset of R2 x {O} such that AI H is compact. 

(i) If H is free abelian of rank 2 then R2 x {h} c hull(A U {oo}) for all 
sufficiently large h. 

(ii) If H is infinite cyclic then there is an H-invariant strip S bounded by 
two (possibly equal) parallel lines in R2 such that A c Sand R2 x { h } n 
hull(A U {oo}) = S x {h} for all sufficiently large h. 

Proof. By convexity, if a point P of upper half-space is contained in 
hull(A U {oo}) then so is the entire vertical ray beginning at P. Now sup-
pose that 0: and fJ are points of A and that the Euclidean distance from 0: 

to fJ is d. Let a be the Euclidean line segment from 0: to fJ . Since the hy-
perbolic geodesic from 0: to fJ is a Euclidean circle of radius d 12, it follows 
that for all h > dl2 we have a x {h} c hull(A U {oo}). 

Let Y E Hand 0: E A and let I be the line in R2 that contains the points 
yn(o:) for nEZ. Let d be the Euclidean distance from yn(o:) to yn+l(o:). By 
the observation above, applied to each of the pairs {yn(o:) , yn+l(o:)} we have 
I x {h} c hull(A U {oo}) for all h > d 12. 

Suppose that H is free abelian of rank 2 with generators YI and Y2' Let d l 

and d2 be the respective translation lengths of YI and Y2 acting on R2 x {O}. 
Let 0: be a point of A. Let In denote the Yl-invariant line through y;(o:). For 
all h>d)2 we have that In x{h}CR2 x{h}nhull(AU{00}). Every point of 
R2 lies on a line segment of length d2 with end points in In and In+' for some 
n E Z. It follows that for h > d,/2 + d2 /2 we have R2 x {h} c hull(Au {oo}). 

Suppose that H is infinite cyclic with generator Y and that y acts on R2 x {O} 
as a Euclidean translation through a distance d. The assumption that AI H is 
compact implies that A is contained in a strip S bounded by y-invariant lines 
II and 12, Since A is closed, the lines II and 12 may be taken to contain points 
of A. If the Euclidean distance from II to 12 is w then for all h > d 12 + w 12 
we have S x {h} c hull (A U {oo}). On the other hand, S x [0, 00) is a convex 
set containing Au {oo}. Therefore R2 x {h} n hull(A U {oo}) = S x {h}. D 

Recall that a topological 3-manifold N is said to be irreducible if every locally 
flat 2-sphere in N is the boundary of a 3-ball in N. 

Proposition. Let r be a geometrically finite, torsion free Kleinian group; set 
M = M(r) and N = N(r). Then N[c ) is compact whenever e is a Margulis 0,00 
number for M. Furthermore, for every sufficiently small Margulis number eo 
the following conclusions hold: 

(i) N[~o ,00) is an orientable, irreducible 3-manifold-with-boundary and is a 
deformation retract of N and hence of M; and 

(ii) N{~o} is a compact 2-manifold-with-boundary, properly embedded in N, 
and is a deformation retract of N(O, 001 and hence of M(O, 001 • 

Proof. Since r is geometrically finite, there is a Margulis number e l for M 
such that N C is compact. [° 1 , (0) 
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Let e be any Margulis number. In order to show that N[;,oo) is compact, 
we observe that for any sufficiently small e' > 0 we have 

~c ~c 

N[e,oo) C nbhd l (hull(Ar) n M[e' ,00))' 

Hence we need only show that (hull(Ar)nM[~, ,oo))/r is compact for sufficiently 
small e'. In particular, we may suppose that e' < e l . Since (hull(Ar) n 
M[c ))/r is compact, and since r has only finitely many conjugacy classes of el ,00 

cuspidal subgroups by 1.7, we need only show that for any cuspidal subgroup H 
of r the set (hull(Ar) n (Ce (H) - Ce(H)))/H has compact closure in M. For 

I 

this we identify H3 with the upper half-space model by an isometry mapping the 
fixed point of H to 00 and set A = Ar - { 00 }. Let h and hI be real numbers 
so that the boundaries of the horoballs Ce(H) and Ce (H) are identified with 

I 

the horizontal planes R2 x {h} and R2 x {hI} , respectively. If H has rank 2 
then 

(Ce (H) - Ce(H))/ He (R2 X [hI' h))/ H, 
I 

the set on the right being compact. If H has rank 1 then 

(hull(Ar) n (Ce (H) - Ce(H)))/H c (S X [hI' hD/H, 
I 

where S is the strip provided by the lemma. Again, the set on the right is 
compact. 

Next we prove that for a sufficiently small Margulis number eo the set N{~o} 
is a compact 2-manifold-with-boundary properly embedded in N (which by 
1.4 is a 3-manifold-with-boundary), and that N{~o} is a deformation retract of 
N(O,eol' This will establish assertion (ii) of the proposition, since N(O,eol is a 
deformation retract of M(O,eol according to 1.6. Since r has only finitely many 
conjugacy classes of cuspidal subgroups, it suffices to show that for any cuspidal 
subgroup H of r there is a Margulis number eH such that for any e ::::: eH the 
set N n (aCe(H)/ H) is a properly embedded 2-manifold-with-boundary in N 
and is a deformation retract of Ce(H)/ H. Equivalently, we must show that for 
small enough e the set nbhd l (hull(Ar)) n aCe (H) is a contractible, properly 
embedded 2-manifold-with-boundary in nbhd l (hull(Ar))' 

We prove this by applying the lemma as before. The statement follows im-
mediately in the case where H is free abelian of rank 2. In the case that H 
is isomorphic to Z let C denote the horoball R2 x [e C , 00), and D denote 
the region S x (0, 00) where S is the strip provided by the conclusion of the 
lemma. We have hUll(Ar) n C = D n C. Hence if C' denotes the horoball 
R2 x [eNI ,00) c C so that the minimum distance between ac and ac' is 1, 
we have nbhd l (hull(Ar)) n C' = nbhd l (D) n C' . But nbhd l (D) is bounded by 
two equidistant surfaces [F, p. 39] with the two boundary components of D as 
axial planes; these equidistant surfaces are intersections of the upper half-space 
with nonhorizontal Euclidean planes EI and E2 in R3 . 

We have C' = Ce(H) for some Margulis number eH ; and for any e ::::: 
eH , the set nbhd l (hull(Ar)) n aCe (H) is the closed strip in the horizontal 
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Euclidean plane aCe(H) bounded by the lines aCe(H) nE, and aCe(H) nE2 • 
Hence nbhd, (hull(Ar)) n aCe(H) is a contractible 2-manifold-with-boundary. 
By inspection we have that nbhd,(hull(Ar))naCe(H) is properly embedded in 
nbhd, (hull(Ar))' This proves (ii) for small eo' 

We shall complete the proof by showing that (ii) implies (i). If (ii) holds for 
a given eo then, in particular, Nteo} is a deformation retract of N(~, eo] ; thus 
N[~o'oo) is a deformation retract of N, and hence (by 1.4) of M. In particular 
N.[c ) is aspherical. Since M is covered by H3 , every locally flat 2-sphere S eo,oo 
in M (r) bounds a unique ball B eM; if S c N[~o' 00) then B c N[~o' 00) by 
asphericity. Hence N[~o' 00) is irreducible. Since M is orientable, so is N[~o' 00] . 

This establishes (i). 0 

1.8. The following proposition about 2-generator groups of isometries of H3 
follows easily from results that can be found in [J0r] or [F, V.I]. 

If I is any (geodesic) line in H3 , we denote by T, the 1800 rotation about 
I. Thus T, is the unique element of order 2 in the group Isom(H3) whose fixed 
point set is I. 

Proposition. Let ~ and 'I be two orientation-preserving isometries of H3 . Sup-
pose that ~oo and '100 have no common fixed point in Soo' Then there is a 
unique line Ie H3 such that T = T, satisfies T~T = C' and T'IT = '1-' . 

If ~ and 'I satisfy the hypotheses of the above proposition, the line I given 
by the proposition will be denoted l(~, 'I). This line is the common perpendic-
ular to the axes of ~ and 'I, suitably interpreted in the degenerate cases where 
one or both of these isometries are parabolic [Fe, 111.3 and V.I]. 

1.9. The line l(~, 'I) is easily seen to depend continuously on ~ and 'I in the 
following sense. Suppose that ~oo and '100 satisfy the hypotheses of Proposition 
1.11, and let (~i) and ('I) be sequences of isometries of H3 converging to ~oo 
and '100 ' respectively, so that ~i and 11i also satisfy the hypotheses of the 
proposition for large i. Let ,,: and ': denote the end points of l(~oo' 1100 ) . 

Then we may label the end points of l(~i' 'I) (for large i) as ': and ,; in 
such a way that ': ~ ,,: and ,; ~ ': as i ~ 00 . 

2. THE POISSON KERNEL 

We shall need some elementary facts about the Poisson kernel for hyperbolic 
space. In this section and the next we present the relevant material from a 
geometric point of view that is natural for the applications in this paper. 

2.1. We define a continuous function II: H n x H n x H n ~ R by 

II(z, z' , w) = exp(dist(z, w) - dist(z', w)). 
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From the hyperbolic law of cosines [F, p. 91] we have 

coshdist(z, w) ( hd' ( ') 
----'-~I -"-- = cos 1st z, z 
cosh dist( z , w) 

- tanh dist(z , w) sinh dist(z , Zl) cos LZ' zw) -I . 

It follows that the function II has a unique positive continuous extension 
II: Hn x Hn x Hn --+ R. The restriction of II to a function H n x H n x S 00 will 
be denoted g . This restriction is given explicitly by 

(2.1.1) g(z, Z', 0 = (coshdist(z, Zl) - sinhdist(z, Zl) COSLZ' ZO-I 

for any z =I- z' E H n and any C E S:,-I ; and by g(z, z, 0 = 1 for any 
z E Hn and any C E S:,-I . 

2.2. It is immediate from the definition of the function IT that for any points 
'" n II") ( I )IT( I " ) Z , Z ,z ,w E H we have (z ,z ,w = II z , z , w z, z ,w . Hence 

in view of the continuity of II we have 

g(z, z" , C) = g(z, Zl, Og(Z' , z" , C) 

C I " H n drs lor any z, z ,z E an any., E 00' 

2.3. There is a simple formula for the function g in terms of the upper half-
space model. Given any point C E S:,-I , let us fix an isometry J of H n 

onto the upper half-space model Rn - I x (0, 00) that maps C to 00 (see 1.1). 
The nth coordinate function on Rn - I x (0, 00) pulls back via J to a function 
1m: H n --+ (0, 00). The effect of replacing J by another isometry mapping C 
to 00 would be to multiply the function 1m by a constant; this is because a self-
isometry of the upper half-space model that fixes 00 is of the form x 1--+ o:a(x) , 
where 0: is a positive constant and a is a Euclidean isometry a of R n that 
fixes the nth standard basis vector. In particular, for any two points z, z' E H n , 

the value of the expression 1m z / 1m z' depends only on the point C and not 
on the choice of J . 

Proposition. With the above conventions we have 

g(z, Zl, C) = 1m zl/lm z 

Jor any points z, z' E H n . 

Proof. We identify H n with Rn - I x (0,00) via the diffeomorphism J, and 
write z ~ (x, t) and z' = (x', t'), where x, x' E Rn - I and t, t' > 0. We 
define two sequences (w) >1 and (w') >1 of points of H n by w. = (x, j) 

11_ 11_ 1 

and w~ = (x' , j). For each j, the vertical line segments ZWj and z' w~ are 
hyperbolic geodesic arcs; hence dist(z, w) = log Ij - znl and dist(z', w~) = 
log Ij - < I . On the other hand, the horizontal line segment from w j to w~ is 
an arc of hyperbolic length 1/j, and hence limj--+oo dist(w j , w;) = 0. From 
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the definition of .9' we then have 
.9'(Z, Z', () = lim exp(dist(z, w) - dist(z', w.)) 

]->00 ] ] 

= lim exp(dist(z , w) - dist(z' , w~)) 
]->00 

= t' I t = 1m z' /lm z. 0 

The function .9' is our version of the Poisson kernel. If H n is identified 
with the Poincare model via an isometry that maps a given point Zo to the 
origin, then the hyperbolic Poisson kernel P: B n x S 00 ~ R, discussed, for 
example, in [N] or [P], is given by P(z, 0 = .9'(zo' z, (). This follows from 
the above proposition together with the calculation [N, Theorem 5.1.3] that if 
V is the isometry from the Poincare model to the upper half-space model that 
sends the origin to the point (0, 1) ERn x (0, 00) and maps ( to 00 then 
P(V-I(z), () =Imz. 

2.4. Conformal expansion factors. Consider a point z E H n and an isometry 
y: Hn ~ Hn . By 1.1, y induces a conformal diffeomorphism y 00 of S 00' If 
we equip Soo with the round metric centered at z, then at each point ( E Soo ' 
the map y 00 has a well-defined conformal expansion factor A > O. (This means 
that the tangent map dyoo: T~(Soo) ~ Tyoc(~)(Soo) satisfies IdYoo(v)1 = Alvl for 
every tangent vector v at (, where I· I denotes length in the round metric.) 
We shall denote the conformal expansion factor of y 00 at ( by Ay, z (0. Thus 
Ay,z is a smooth positive-valued function on Soo' 

Note that if ( is a fixed point of y then dy 00 (() is a linear automorphism of 
T~(Soo) and we have Ay,z(O = IdetdYoo(OII/(n-I). Thus in this case Ay,z(O 
may be calculated without reference to the round metric or the point z. 
Proposition. Let z be any point of Hn and let y be any isometry of Hn. Then 
we have Ay,z(O = .9'(z, y-I Z, 0 for every point ( E Soo' 
Proof. The corresponding statement for the Poincare model is given in [N, 
Lemma 3.4.2]. This together with 2.2 gives the proposition. 0 

2.5. The Laplacian. For any Riemannian n-manifold M we have a Laplacian 
operator 

L\ = *d * d: Coo(M) ~ Coo(M) , 
where * is the Hodge star and d denotes exterior differentiation. 

Using Proposition 2.3, one shows the following by a straightforward calcula-
tion in the upper half-space model. (See [N, Theorem 5.1.3].) 

Proposition. For any z E Hn, (E Soo' and any real number r. the function 
rP(: Hn ~ R defined by rP((z) = .9'(zo' z, (/ satisfies the equation L\rP( = 
-r(n - r - l)rP(. 

Proposition 2.5 is the starting point for the use of the Poisson kernel in 
constructing solutions to the equation L\rP( = -r(n - r - 1 )rP( ("generalized 
eigenfunctions" for the Laplacian) with prescribed "boundary values." From the 
point of view of the present paper this construction is most naturally described 
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in terms of the notion, first formalized by Sullivan, of a "conformal density." 
We shall discuss this in the next section. 

3. CONFORMAL DENSITIES 

In this section we discuss a r-equivariant potential theory in hyperbolic 
space, where r is a Kleinian group. Our treatment, which roughly parallels 
the one given in Nicholls's recent book [N], is formulated in terms of Sulli-
van's notion of a conformal density. This makes the equivariant theory work 
out quite neatly. Our approach to the uniqueness of a r-invariant conformal 
density when all r-invariant superharmonic functions are constant is somewhat 
different from the approach used in [N, SuI]. We show (Proposition 3.7) that 
an arbitrary (n - I)-conformal density on H n , not necessarily r-invariant, is 
determined by the associated harmonic function. This works only when the 
degree of the conformal density is n - 1 , but is simpler than the arguments in 
[N, SuI] that depend on the ergodicity of the action of r on its limit set with 
respect to the measure class determined by the conformal density. 

3.1. By a Borel measure on a locally compact metrizable space X we shall mean 
a measure on the Borel subsets of X that is finite on the compact subsets of 
X. Measures will always be understood to be nonnegative: we shall have no 
occasion to consider signed measures. If 11 is a finite measure on a space X, 
the number Il(X) will be called the total mass of 11. If 11 is a measure and f is 
a measurable function on a measurable space (X,.5W) , and if v is the measure 
defined by veE) = h f dll for every E E.5W , then we write dv = f dll. 

If x is a point of locally compact metrizable space X, we denote by Ox the 
Dirac measure supported at x: by definition, for any Borel set E c X we have 
0x(E) = 1 if x E E and o)E) = 0 otherwise. 

If X and Yare locally compact metrizable spaces and f: X --> Y is a 
homeomorphism, then any Borel measure 11 on Y gives rise to a measure on 
X , called the pull-back of 11 and denoted f * 11. It is defined by (/ * 11) (E) = 
Il(/(E)) for any Borel set E eX. 

3.2. Conformal densities. Let n be an integer ~ 2, and let D be a number 
in [0, n - 1]. By a D-conformal density for the sphere at infinity S:,-l C Hn 

we mean a family L = (llz)zEHn of finite Borel measures on Soo = S:,-l , 
indexed by the points of H n , such that for any two points z, z' E H n we have 
dllzi = .9(z, z' , .)D dll z . 

A family L = (IlZ)zEHn of finite Borel measures on Soo will be called a 
conformal density if it is a D-conformal density for some D E [0, n - 1] . 

The trivial conformal density is (0) zEHn ; it will be denoted by O. Note that 
o is a D-conformal density for every D E [0, n - 1]. On the other hand, it is 
clear that a nontrivial conformal density L can be a D-conformal density for 
only one value of D; we call D the degree of L . 

If Zo is a point of Hn and 11 is a finite Borel measure on Soo' then for 
any D ~ 0 there is a unique D-conformal density L = (Il z) such that Ilz = 

o 
11. Indeed, uniqueness is clear since for any z E Hn we must have dll z = 
.9(zo' Z, .)D dll. To prove existence, we define Ilz' for each z E Hn , to be 
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the unique Borel measure such that dJi z = 9"(zo' Z, .)D dJi; using 2.3 we find 
that for any points z, z' E H n we have 

, D D, D 
9"(zo' z,·) =9"(zo' z,·) 9"(z, z,·) , 

and hence 
'D D 'D ,D dJizl = 9"(zo' z ,.) dJi = 9"(zo' z, .) 9"(z, z ,.) dJi = 9"(z, z ,.) dJi z ' 

so that (Jiz) is the required conformal density. 
If L = (JiJ is a conformal density then all the measures Ji z ' z E H n , 

have the same support; this follows from the definition, since the function 
9"(z, z', .) is strictly positive on Soo for all z, z' E H n . The common support 
of the Ji z will be called the support of L and will be denoted supp L . 

If L = (Jiz)zEHn and L' = (Ji:)ZEHn are two D-conformal densities for a 
given D, it is clear that (Jiz + Ji:)ZEHn is also a conformal density; it will be 
denoted L +L' . More generally we can define the sum ~i:1 ~ of any finite 
family (~)I<i<n of D-conformal densities. 

Now let L-= (JiZ)ZEHn be a D-conformal density and f a continuous 
positive-valued function on S . For each z E H n let II' be the Borel mea-00 ~z 

sure defined by d Ji: = f d Ji z. It is clear that ./Y = (Ji:) zEHn is aD-conformal 
density; we shall indicate that ./Y is defined in this way from f and L by 
writing d./Y = f dL . 
3.3. The area density. For any point z E H n , the round metric centered at z 
determines an area measure on Soo' We let Az denote such an area measure 
normalized so as to have total mass 1. It follows from Proposition 2.4 and 
the change-of-variable formula for the Lebesgue integral that (AZ)ZEHn is an 
(n - I)-conformal density. This will be called the area density and will be 
denoted s( . 

3.4. Invariant conformal densities. Suppose that L = (Jiz) is aD-conformal 
density and that y: H n --> H n is an isometry. Then the family of Borel measures 
(Y:'Jiyz)ZEHn is also a D-conformal density. Indeed, for any points z, z' E H n 

and any continuous function f on Soo' we have 

! fd(Y:'JiyZ') = !(foy:l)dJiyzl 

= ! f 0 y:1 (w)9"(yz, yz' , W)D dJiyz(w) 

! -I , -I D = f 0 Yoo (w)9"(z, z ,y w) dJiyz(w) 

= ! f9"(z, z' , .)D d(Y:'Ji yz )' 

We call (Y:'Ji yz ) the pull-back of the conformal density L, and we shall denote 
it by y*L. 

Now let r be any group of isometries of H n • A conformal density L will 
be termed r-invariant if we have y* L = L for every y E r. The area density 
is clearly invariant under the full group of isometries of H n • 
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If a D-conformal density L = (J1 z ) is r-invariant then for any Z E H n and 
any y E r we have d(y* f.lz) = df.ly-IZ = .9(z, y-I Z, .)D df.lz; hence in view of 
2.4 we have 

(3.4.1) 

3.5. Eigenfunctions of the Laplacian. Let n 2: 2 be an integer, and let D be a 
numberin the interval [0, n-l]. Let L = (f.lZ)zEHn be a D-conformal density. 
Let us consider the nonnegative-valued function u = u L on H n defined by 
u(z) = f.l (S ). If we fix any point Zo E H n and set f.l = f.l z ,then according 

Z 00 0 

to the definition of a conformal density, u may be written as 

(3.5.1) u(z) = 1 .9(Zo' Z, ()D df.l(O. 
Soo 

For the area density .stI we clearly have U.w == 1 . 
According to Proposition 2.5, for any ( E Soo the function (h = .9(zo, " OD 

is COO and satisfies ~¢, = -D(n - D - 1)¢,. By differentiating under the inte-
gral sign in (3.5.1) it follows that for any D-conformal density L the function 
u = u L is COO and satisfies the equation 
(3.5.2) ~u = -D(n - D - l)u. 

In particular, if D = n - 1 then (3.5.2) says that u is harmonic. 
If L is invariant (3.4) under a group r of isometries of H n , then for any 

y E r and any Z E H n we have 

u(yz) = f.lyz(Soo) = (y* f.lz)(Soo) = f.lz(Soo) = u(z). 

Thus u is r-invariant (i.e., constant on the orbits of r). 

3.6. Proposition. Let f be a continuous function on Soo' and let ./Y be the 
conformal density defined by d./Y = f d.stl where.stl is area density. Then the 
function Ii: Hn -> R, defined by Ii / H n = u.ff and Ii / S 00 = f, is continuous. 
Proof. We identify H n via a conformal diffeomorphism with the Poincare 
model. Thus Soo is identified with the unit sphere Sn-I . We write A = Ao ' 
Since f is continuous and u = u.ff is Coo, we need only show that if (z i) is 
a sequence of points H n converging to a point (0 E Soo' then U(zi) converges 
to f( (0)' We set C = f( (0)' For each i we have 

U(Zi) = 1 .9(0, zi' On-If(OdA(O. 
Soo 

On the other hand, the integral Is .9(0, Zi' On-I dA(O represents the total 
mass of A ,which is 1. Hence 00 

Zj 

r n-I d U(zi) - C = I~ .9(0, zi' () (I(() - C) A((). 
Soo 

To show that u(zi) -> C, it suffices to show that lim sup /u(Zj) - C/ < e for any 
prescribed e > 0. Given e, let U be a neighborhood of (0 in Soo such that 
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If( () - Cj < e for every ( E U. We may take U to be the t5-neighborhood 
for some t5 > ° in the standard metric on Sn-l ; thus a point ( lies in U if 
and only if L((o' 0, 0 < t5. We may write u(Zj) - C as 

19'(0, Zi' On-l(f(O-C)dA(O+ r 9'(0, Zi' ()n-l(f(O-C)dA(O. 
U }soo-u 

The first term in the above expression is bounded above in absolute value by 
e. We shall complete the proof by showing that the second term tends to ° as 
i-too. 

Since f is continuous on Soo' it is enough to show that SUP(ESoo -u 9'(0, Zj' 0 
tends to ° as i -t 00. This follows easily from the formula (2.1.1) for 9'. 0 

3.7. Proposition. If ,L and ,L' are (n - 1 )-conformal densities for H n such 
that U L = U L' , then ,L = ,L' . 

Proof. For the purpose of this argument we identify H n with the Poincare 
model B n so that H n is identified with B n. Then any point in H n may be 
written in the form t(), where () E Sn-l and 0::; t < 1 . 

We will use the following fundamental symmetry of the function 9' that 
follows directly from the formula (2.1.1): 
(3.7.1) 9'(0, te 0) = 9'(0, t(), () 

for any t E [0, I) and any (, () E Sn-l . 
Now let ,L = (J.lz) be any (n - I)-conformal density and let f be any 

continuous function on Soo. Let./Y be the conformal density defined by d./Y = 
fdS;( , where s;( is the area density. By Proposition 3.6 the function u: H n -t 

R, defined by u I H n = u./Y and u I Soo = f, is continuous. Hence 

(3.7.2) If dJ.lo = li~ I U ./Y(tO dJ.lo(()· 
(->\ 

For any t < 1 we have, by (3.7.1) and the Fubini Theorem, 

I U ./Y(t() dJ.lo(O = II f(())9'(O, t(, ())n-l dA(()) dJ.lo(O 

= 119'(0, t(), On-l dJ.lo(Of(()) dA(()) 

= I U L(t())f( ()) dA( ()) . 

If ,L' = (J.l:) is a second conformal density such that U L = U L' , then for any 
t < 1 we have 

I U ./Y(t() dJ.l~(() = I U L,(t())f(()) dA(()) 

= I uL(t())f(())dA(()) = I u./Y(t()dJ.lo(O. 

Taking limits as t -t 1, it follows by (3.7.2) that J f dJ.lo = J f dJ.l~ for every 
continuous function f on Soo. Hence J.lo = J.l~. By 3.2 it follows that ,L = 
,L'. 0 
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3.8. We shall need the following elementary result concerning the degree of a 
r-invariant conformal density, when r is a discrete group (cf. [N, Corollary 
3.4.5]). 

Proposition. Let r be a nonelementary discrete group of isometries of Hn. Then 
every nontrivial r-invariant conformal density for Hn has strictly positive degree. 
Proof. Suppose that there exists a nontrivial r-invariant conformal density of 
degree O. By definition, this means that there is a nonzero r-invariant finite 
Borel measure /l on S 00 • 

Since r is nonelementary, some element y of r is loxodromic; let P and Q 
be the fixed points of y 00 • Then any point , E S 00 - {P , Q} has a neighborhood 
U in S 00 such that y::' (U) n U = 0 for all k > O. Since /l is finite and count-
ably additive, it follows that /l( U) = O. This shows that supp /l C {P , Q}. But 
supp /l is nonempty and invariant under r; thus Soo contains a r-invariant 
subset of cardinality 1 or 2. Since r is discrete, it follows that r has an abelian 
subgroup of finite index. This contradicts the hypothesis that r is nonelemen-
tary, and the proposition is proved. 0 

3.9. A COO function f on a Riemannian manifold is termed superharmonic if 
it satisfies the inequality !1f:::; 0 . 
Proposition. Let r be a nonelementary discrete group of isometries of Hn . Sup-
pose that every r-invariant positive-valued superharmonicfunction on H n is con-
stant. Then any r-invariant conformal density for Hn is a constant multiple of 
the area density. 
Proof. Suppose that L = (/lz) is a r-invariant D-conformal density for some 
DE [0, n - 1]. Since r is nonelementary, it follows from Proposition 3.9 that 
D i- O. We may assume that L i- 0, so that the function u = u,L is positive-
valued. By 3.5 u is r-invariant and satisfies the equation !1u = -D(n-D-I)u; 
in particular, u is superharmonic. Hence by the hypothesis u is a constant C. 

Thus 0 =!1u == D(n - D - I)u. Since D i- 0 it follows that D = n - 1. 
Since u,L = C = UCsd ' Proposition 3.7 then guarantees that L = C.9f. 0 

Note that our approach to this uniqueness question is bas~ on Proposition 
3.7, which applies to an arbitrary (n - I)-conformal density. The support of 
the conformal density L plays no role in the argument. 

Another, somewhat less elementary, approach is found in the literature. Sup-
pose that L = (/lz) is a r-invariant D-conformal density with suppL = Ar . 
(A construction, due to Patterson, of conformal densities with these proper-
ties will be discussed in the next section.) Then any r-invariant D-conformal 
density supported on Ar is a constant multiple of L provided that r acts 
ergodically on Soo with respect to the measure class determined by L [N, 
Theorem 4.2.1]. Suppose that A is a r-invariant subset of Soo such that A 
and Soo - A are sets of positive measure with respect to this measure class. 
Let L' be given by dL' = XA dL. Using points of density one can show 
that the ratio u,L' / u,L tends to X A along almost all (/lo) rays from the origin 
in the Poincare model. Given this, the ergodicity follows if one knows that 
the ratio of any two positive r-invariant eigenfunctions of !1, with eigenvalue 
-D(n - D - 1), is bounded above and below by positive constants. In [Su3] 
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Sullivan uses this method to give examples of Kleinian groups r, for which 
there exist unique r-invariant conformal densities of degree 2 supported on 
Ar, but where these conformal densities are not constant multiples of the area 
density. (In fact, for these groups Ar has area 0, although it follows from the 
existence of such conformal densities that Ar has Hausdorff dimension 2.) 

4. THE PATTERSON CONSTRUCTION 

In this section we describe a construction first introduced by Patterson [P], 
and extensively studied by Sullivan [Sul-Su3], for associating to a Kleinian 
group r a r-invariant conformal density supported on the limit set of r. By 
taking a slightly more general point of view than Patterson's, we are able to con-
struct decompositions of a Patterson density corresponding to decompositions 
of the group. In §5, by specializing to the case of a free group, we shall obtain 
the paradoxical decomposition described in the introduction. 
4.1. Uniformly discrete sets. A subset W of Hn will be called uniformly discrete 
if there is a number e > 0 such that dist( z , w) > e for any two distinct points 
z , w E W. Such a number e will be called a modulus of discreteness for W. 

If r is any discrete group of isometries of Hn , then for any W E Hn , the 
orbit W = rw is a uniformly discrete set. (Indeed, since r is discrete and w 
has compact stabilizer in the isometry group of H n , the orbit rw is discrete. 
Thus there is a number e > 0 such that nbhde (w) n rw = {w}. Since r 
consists of isometries it follows that e is a modulus of discreteness.) 

If W c H n is any uniformly discrete set, the closure of W in H n has the 
form W U A, where A is a closed subset of Soo' We call A the limit set of 
W. Note that A is empty if and only if W is finite. 

If r is a discrete group of isometries, the limit set of any orbit of r is the 
limit set of r. 
4.2. The main result of this section is: 

Proposition. Let W be an infinite, uniformly discrete subset of Hn , and let QJ 

be a countable collection of subsets of W. Suppose that W E QJ. Then there 
exist a number DE [0, n - 1] and afamity (Lv)VE'.u of D-conformal densities 
for Hn , indexed by the collection QJ, satisfying the following conditions. 

(i) Lw -1= O. 
(ii) For any finite family (V:)'<i<m of disjoint sets in QJ such that V = 

U7:, v: E QJ, we have Lv .;; t7:, Lv . 
(iii) For any V E QJ and any isometry y:' Hn -+ Hn such that y V E QJ, we 

have y:(~v) = Lv' 
(iv) For any V E QJ, the support of Lv is contained in the limit set of Lv' 

In particular, for any finite set V E QJ we have Lv = O. 

Before turning to the proof of the proposition, let us point out one of its 
consequences. If r is any nonelementary discrete group of isometries of H n , 
then any orbit W of r is uniformly discrete by 4.1 and infinite because r is 
nonelementary. Thus we may apply Proposition 4.2 to W, taking QJ to be any 
countable collection of subsets of W with W E QJ (e.g., QJ = {W}). This gives 
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a conformal density L = Lw . It follows from 4.2(iii) that L is r-invariant. 
In particular, the support of L is r-invariant. On the other hand, we have 
suppL =J= 0 by 4.2(i); and by 4.2(iv) we have suppL c Ar . Since the action 
of r on Ar is topologically minimal, it follows that suppL = Ar . 

In particular, taking m = {W} , we obtain the following 
Corollary (Patterson [P]). If r is any nonelementary discrete subgroup ofisome-
tries of Hn , there is a r-invariant conformal density for H n whose support is 
Ar . D 

The rest of this section is devoted to the proof of the proposition. We are 
given an infinite, uniformly discrete set W C H n and a countable collection m 
of subsets of W, with W Em. 
4.3. The Poincare series. For any point z E H n and any s ~ 0 we denote 
by I:( z , s) the sum of the "Poincare series" for the uniformly discrete set W. 
That is, 

I:(z, s) = L e -sdist(w, z) 

wEW 

where we interpret the sum as a nonnegative number or +00. 

The following properties of I:(z, s) are immediate from the definition. 
4.3.1. For any z E H n and any s ~ s' ~ 0 we have I:(z, Sf) ~ I:(z, s). 
4.3.2. For any z, z' E H n and any s ~ 0 we have 

~(' ) < s dist(z, z')~( ) 
~z,s_e ~z,s. 

Lemma. There is a unique nonnegative number D ::::; n - I such that, for every 
point z E Hn , the sum I:( z , s) is finite for all s > D and infinite whenever 
0< s < D. 
Proof. First we note that I:( z , s) is finite for s > n - I . This is proved, in the 
case that W is an orbit of a discrete group, in [N, Theorem 1.6.1]. The proof 
applies as well to an arbitrary uniformly discrete set. Briefly, the idea is that 
the Poincare series converges as long as s is larger than the exponential growth 
rate of the number NR of points of W in the ball of radius R about z. The 
uniform discreteness of W implies that NR cannot grow faster than the volume 
V(R) of a ball of radius R. However, we have V(R) = An J; sinhn - I xdx, 
where An is a number depending only on the dimension n. Hence for all R 
we have V(R) ::::; Bne(n-I)R , where Bn is again a number depending only on 
n. 

It now follows from (4.3.1) and the discussion in 4.3 that for each z E H n 

there is a unique number D z ::::; n - 1 such that I:( z , s) < 00 for all s > D z 
and I:(z,' s) = 00 whenever 0 < s < Dz . It follows from 4.3.2 that Dz is 
independent of z. D 

The number D given by the lemma is called the critical exponent of W. 
4.4. The critically divergent case. The construction of the conformal densities in 
the statement of Proposition 4.2 is simplest in the case where I:( z , D) is infinite 
for every z E H n . We sketch the construction in this case before discussing the 
general case. 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



252 MARC CULLER AND P. B. SHALEN 

First we define a family of measures flv on H n by ,z,s 

_ 1 '"' -s dist(w, z) () 
flv,z,s - 1:(z s) L.J e w' 

, wEV 

for Z E H n and s > D . 
Now fix an arbitrary point Zo E H n and let (Sj)j2:0 be a decreasing sequence 

of real numbers converging to D such that the sequence of measures (flv s z ) 
, }' 0 

is a weakly convergent sequence. Let flv denote the limit. The condition , zo 
1:(z, D) = 00 implies that the support of flv z is contained in S . 

, 0 00 

It is immediate from the definition that for all s > D 

d ' sd flv,z',s=II(z,z,.) flv,z,s' 

This implies first of all that the sequence (flv z s.) is weakly convergent for each , '} 

Z E H n . Furthermore, letting flv denote the limit of the sequence (flv z s ) , ,z , 'j 

and viewing these measures as measures on Soo' we obtain the formula 
, D 

dflv,z' = .9(z, z ,.) dflv,z' 

In particular, Lv = flv , z is a D-conformal density. 

4.5. Adjustment functions. The above construction must be modified in the case 
where 1:(z, D) < 00; the idea, invented by Patterson, is to perturb the terms 
in the sum 1:( z , s) to obtain an expression 1:' (z , s) that is always finite when 
s > D and infinite when 0 ::; s ::; D. In our formulation, we show that for a 
suitably chosen real-valued function 0: the construction sketched above can be 
carried out with dist( z , w) replaced by 0:( dist( z , w)) throughout. 

If 0: is any real-valued function on [0, (0) , then for any point z E H n and 
any s > 0 we define 

~( ) _ '"' -sa(dist(w, z)) 
~o:,z,s - L.J e 

wEW 

where we again interpret the sum as a nonnegative number or +00. Note that 
if id denotes the identity function on [0, (0) then 1:( id, z , s) = 1:( z , s) for 
any z and s. 

We define an adjustment junction to be a C 1 real-valued function 0: on 
[0, (0) such that (i) 0:(0) = 0, (ii) 0 ::; 0:' (t) ::; 1 for all t > 0, and (iii) 
lim t --+oo 0:' (t) = 1. In particular, an adjustment function 0: must satisfy 0 ::; 
0:( t) ::; t for all t ~ O. The identity function on [0, (0) is obviously an 
adjustment function. 

The following generalizations of 4.3.1 and 4.3.2 hold for any adjustment 
function 0:. 

4.5.1. For any Z E H n and any s ~ s' ~ 0 we have 1:(0:, z, s') ~ 1:(0:, Z, s). 
4.5.2. For any z, z' E H n and any s ~ 0 we have 

, sdist(z,z') 1:( 0:, Z , s) ::; e 1:( 0:, Z , s) . 
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Indeed, 4.5.1 is immediate; and 4.5.2 follows from the observation that, by 
virtue of condition (ii) in the definition of an adjustment function, we have 

la(dist(w, z)) - a(dist(w, z'))1 :::; I dist(w, z) - dist(w, z')1 :::; dist(z, z') 

for any WE W. 
We also have the following extension of 2.1. 

Lemma. For any adjustment function a, the function rIa: Hn X Hn X Hn ---+ R, 
defined by 

rIa(z, z', w) = exp(a(dist(z, w)) - a(dist(z', w))) 

for (z , z' , w) E Hn X Hn x Hn and rIa (z , z' , 0 = .9( z , z' , 0 for (z , z' , 0 E 
H n x H n x Soo' is continuous. 
Proof. It is enough to prove that if (z), (z), and (Wi) are sequences of points 
in Hn that converge, respectively, to points z E Hn, z' E Hn , and , E Soo ' 
then 

lim exp(a(dist(zl·' w)) - a(dist(z', w))) = .9(z, z' , O. 
l--+CX) I 1 1 

By definition, we have 

lim exp(dist(Zi' Wi) - dist(z;, w)) = .9(z, z' , O. 
1--+00 

In particular, dist( z i' w) - dist( z;, w) converges. Since a' (t) ---+ 1 as t ---+ 00 , 

we have 
1. a(dist(zi' w)) - a(dist(Z;, w)) 
1m. ., =1. 
1--+00 dlSt(Zi' Wi) - dlSt(Zi' w) 

The result follows. 0 

4.6. Lemma. There exists an adjustment function a such that, for every z E 
H n , we have 1:(a, z, s) < 00 for all s > D and 1:(a, z, s) = 00 whenever 
O:::;s:::; D. 
Proof. First consider an arbitrary adjustment function a. Since a(t) :::; t for 
all t? 0 , we have 1:( a, z , s) ? 1:( z , s) for all s; hence 1:( a, z, s) = 00 when 
o :::; s < D. Now suppose that s > D and choose a positive number k < 1 
such that sk < D. Since limt --+ oo a' (t) = 1, there is a constant C such that 
a(t) ? kt - C for all t? O. Hence, for s > D, we have 

1:(a, z, s):::; eCs1:(z, sk) < 00. 

Thus we need only to construct a so that 1:(a, z, D) = 00. We first dispose 
of the special case D = O. Since W is infinite, it is clear that 1:(z, 0) = +00 

for every z. Hence in the case D = 0 we may take a to be the identity 
function. 

Now suppose that D > O. If a is any adjustment function, it follows from 
4.5.2 that 1:(a, z, D) is either finite for all z E Hn or infinite for all z E H n . 
Hence we need only show that for a given point z E H n there is an adjustment 
function a such that 1:(a, z, D) = +00. 
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Let (Om) m> 1 be a strictly increasing sequence of positive numbers that con-
verge to 1. For each m 2: 1 we set sm = 0mD. Since 0 < sm < D the sum 

~( ) _ ~ -Sm dist(w, z) 
~ Z, sm - ~ e 

wEW 

is infinite. Hence there is a finite subset Xm of W such that 
~ -smdist(w,z) > 
~ e _m. 

WEXm 

Let (Rm)m>1 be a monotone increasing sequence of positive numbers tending 
to +00, such that for each m 2: 1 and each w E X m we have dist( z , w) :::; 
Rm' Let p be any continuous, monotone increasing real-valued function on 
[0,00) such that P(Rm) = Om for all m > 0 and P(t) < 1 for all t 2: O. 
Then Q(t) = J~ P(u) du is an adjustment function and Q(t) :::; 0mt whenever 
0:::; t :::; Rm' For each m > 0 and each w E Xm we have dist(w, z) < R m , 
and hence 

Q(dist(w, z))D :::; 0mDdist(w, z) = sm dist(w, z). 

Thus 
1:( Q, z, D) 2: L e -Da(dist(w, z)) 2: L e -Sm dist(w, z) 2: m. 

Since this holds for all m 2: 1, we must have 1:(Q, Z, D) = +00. 0 

For the rest of this section, we fix an adjustment function Q constructed as 
in the lemma. We shall write 1:' (z, s) = 1:(Q, Z, s) for all z and s. 

4.7. For any s > D and any V E m we have 
~ -sa(dist(w, z)) < ~'( ) 
~e _~ z,s <00 
wEV 

by Lemma 4.6. Hence we may define a Borel measure 
L e -sa(dist(w, z)) <5w 

wEV 

on Hn. This measure will be denoted fl v, z , s. Its total mass is :::; 1:' (z , s) , 
with equality when V = W . 

4.8. For the rest of this section we fix, arbitrarily, a point Zo E H n . 

Lemma. There exists a sequence (s»o oJreal numbers with theJollowing prop-1 l_ 
erties: 

(i) Sj > D Jar all j, and limj->oo Sj = D ; 
(ii) Jar every V Em, the sequence (1:' (zo' S)-I fl V, ZO' s) j?O is a weakly 

-n convergent sequence oj Borel measures on H . 

Proof. Let (t) be any sequence of numbers > D such that limi-->oo ti = D. 
For any V E QJ, we have a sequence of measures (1:' (zo ' t i) -I flv z t) that by 

, 0' I 
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4.7 all have total mass:::; 1. Given any V E SU, there is a subsequence (tJ 
) 

such that the sequence (1;'(zo' tJ-1Jlv t) is weakly convergent. Since SU 
1 ,zo' lj 

is countable, the conclusion of the lemma follows via diagonalization. 0 

For the rest of the section we fix a sequence (s j) having the above properties 
(i) and (ii). For each j ~ 0 we set Cj = 1;' (zo' s). For each V E SU we let 

Jl~ denote the weak limit of the sequence (~j Jlv, Zo ,s) ; by definition, Jl~ is a 
Borel measure on H n . 

4.9. Lemma. We have Cj -+ +00 as j -+ 00. 

Proof. By 4.6 we have 1;' (zo' D) = +00. This implies the lemma since the 
f h .... '()" -s",(dist(w z)) . . 1 d . terms 0 t e sum ~ z, s = L..JiEI e I' are posItlve-va ue contmuous 

functions of s. 0 

4.10. Lemma. For each V E SU, the measure Jl~ has support contained in 
Sn-I. 

00 

Proof. It is enough to show that Jl~(~) = 0 for any compact set ~ C H n . The 
set V n ~ is finite since V is a subset of the uniformly discrete set W. We 
have 

Jlv,zo,s, (~) = L exp(-sp(dist(w, z))):::; card(V n~) 
wEV 

for each j ~ O. Thus ~ Jl~(~) is at most ~. card( V n ~) , which tends to 0 , ) 

as j -+ 00 by virtue of Lemma 4.9. Hence Jl~(~) = O. 0 

4.11. Lemma. For any V E SU and any point z E H n , the sequence ...!.. Jl c) v, Z,Sj 

converges weakly to Jlv, z . 

Proof. It is immediate from the definition that 

where II", is the function given by Lemma 4.5. Setting l = cl Jlv and 
} ) , Zo ' Sj 

Jlj = ~jJlv,z,s)' we therefore obtain, for any continuous function f on H n 

and any j ~ 0, 

Now since limj--->oo Sj = D, and since f and II are continuous on the compact 
-n - S - D 0 space H we have II",(zo' z, .) ) f -+ II",(zo' z,·) f uniformly. Since the Jlj 

converge weakly to Jl~, it follows that 
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The right-hand side of the last equation is equal to J f d f.1v Z since Lv = 
(f.1v z) is a D-conformal density. So we have 

~im f f df.1J. = f f df.1v Z· 
}-+CXJ ' 

This proves the lemma. 0 

Proof of Proposition 4.2. In light of Lemma 4.10, for each V Em, the measure 
f.1~ may be regarded as a measure on Soo' According to 3.3, there exists for each 
V E m a unique D-conformal density Lv = (f.1v ) such that f.1v = f.1°v' We ,z ,Zo 
shall prove Proposition 4.2 by showing that the family (Lv) of D-conformal 
densities satisfies conditions (i)-(iv) of the proposition. 

To prove (i) it is enough to show that f.1 w =1= O. But as we observed in 4.7, 
, Zo 

for each s > D and each Z E H n , the measure f.1w, z ,s has total mass r,' (z , s) ; 
in particular, for each j 2: 0 the total mass of f.1 w is C .. Thus f.1w is ,ZO,Sj ] ,Zo 
the weak limit of a sequence of measures of total mass 1, and therefore itself 
has total mass 1. 

To prove (ii) we observe that if V = U;:1 ~,where V and the ~ belong 
to m,thenforeach s>D and each zEHn we have f.1v,z,s = 2:;:If.1v ,z,s 
by the definitions of flv, Z ,s and flv., Z ,s' Hence for each j 2: 0 we have ' 

11 m 
-f.1 = - '\:' f.1 C. V,Z,s C.L v.,z,s· 

] ] i=1 

Using Lemma 4.11 we can take weak limits of both sides to obtain f.1v, Z = 
2:;:1 f.1v z· This proves (ii). 

To p~~ve (iii) we must show that if V is a set in m and y is a hyperbolic 
isometry such that yV Em, then for each Z E H n we have y* f.1 v y = flv . 00 y , z ,z 

-n * If we think of f.1y v , y z and f.1 v, z as measures on H ,then y 00 f.1y v, y z may be 
rewritten as '1* f.1 v . For each s > D we have y ,yz 

-* _ '\:' -sa(dist(yw,yz))-*(J ) _ '\:' -sa(dist(w,yz))J _ 
y f.1yv,yz,s - Ley yw - Lew - f.1v,z,s· 

wEV wEV 
Hence for each j 2: 0 we have 

_* ( 1 ) 1 Y -f.1 =-f.1 C. yV,yz,Sj C. v,z,s}' 
] ] 

Using Lemma 4.11 we can take weak limits of both sides to obtain 'I * f.1y v, y Z = 
f.1v z' as required. 

To prove (iv) we consider an arbitrary set V Em. For any s > D, it follows 
from the definition of the measure f.1v, ZO' s that the support of f.1v, zo, s is exactly 
V u Av ' the closure of V in H n . Hence supp( I:} f.1v ,zo, s}) = V u Av for each 

j 2: O. By Lemma 4.11 it follows that supp f.1~ c V u Av' But supp f.1~ c Soo 
by 4.10, and hence supp f.1~ c Av' This implies (iv). 0 
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5. THE PARADOXICAL DECOMPOSITION 

This section is devoted to the proof of the following two results. 
5.1. Proposition. Let r be a Kleinian group that is free on a generating set 3 
with k elements, where 2 :=:; k < 00. Suppose that every r-invariant conformal 
density for H3 is a constant multiple of the area density. Then for any z E H3 
we have 

maxdist(z, ~. z) ~ -2' log((k - 1)(2k - 1)). 
~ES 

5.2. Proposition. Let ~ and rt be two orientation-preserving isometries of H3 . 
Suppose that the group r generated by ~ and rt is discrete and is free on 
the generators ~ and rt. Suppose in addition that every r-invariant conformal 
density for H3 is a constant multiple of the area density. Then for any z E H3 
we have 

max( dist( z , ~ . z) , dist( z , rt . z)) ~ log 3 . 

5.3. The key step in the proofs of Propositions 5.1 and 5.2 is the following 
lemma. When the hypotheses of 5.1 or 5.2 are satisfied, the lemma will give the 
"paradoxical" decomposition of the normalized area measure on Soo' which 
was described in the introduction. 
Lemma. Let r be a Kleinian group that is free on a generating set 3. Set 
'I' = 3 II 3-' cr. Let Zo be any point of H3. Then there exist a number 
D E [0, 2], a r-invariant D-conformal density L(flz) for H 3 , and a family 
(v If!) If!E'I' of Borel measures on S 00 such that 

(i) flz (Soo) = 1 ; 
o 

(ii) flzo = LIf!E'I'vlf!; and 
(iii) for each IfI E 'I' we have 

!()"If!,zo)D dVIf!-1 = 1-! dVIf!' 

If 3 is a two-element set g, rt} and if Zo E l(~, rt) (see 1.8) then we also 
have 

(iv) J dVc l = J dv~ and J dV l1 -1 = J dv l1 • 

Proof. Every element y of r can be written uniquely as a reduced word 
1fI, ... IfI m ' where m ~ 0, each lfIi is an element of '1', and lfIi+, -I lfIi-' for 
1 = 1, ... , m - 1 . If y -I 1 , i.e., if m > 0, we shall call 1fI, the initial letter 
of y. For each IfI E 'I' , let J If! denote the set of nontrivial elements of r that 
have initial letter 1fI. Then r is a finite disjoint union {I} II UIf!E'I' JIf!' Since 
r is discrete and torsion free, it acts freely on H3. Hence the orbit W = rzo 
is a disjoint union 

(5.3.1) W = {zo} II II VIf! 
If!E'I' 

where VIf! = {y z: y E J If!}' Let m denote the finite collection of all subsets of 
W that are subunions of the above disjoint union; that is, W consists of all sets 
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of the form U\lfE'I" V\If or {zo} II U\lfE'I" V\If for '1" c '1'. We apply Proposition 
4.2 with these choices of Wand m. We take D to be a number, and (Lv)veu 
a family of conformal densities, for which conditions (i)-(iv) of 4.2 are satisfied. 
We write Lv = (,uV,Z)ZEHn. We set L = Lw and v\If = ,uv""zo for each 
'I' E '1'. According to 4.2, L is r-invariant. It follows from condition (i) of 
4.2 and the definition of a conformal density that ,uz =,uw Z i= 0; hence after 

o ' 0 
mUltiplying by a constant we may assume that,uz has total mass 1. This is 

o 
conclusion (i) of the present lemma. We shall show that the other conclusions 
of the lemma also hold with these definitions of L and of the v \If . 

By (5.3.1) above and condition (ii) of 4.2, we have 

,u =,u =,u +",u Zo w,zo {zo}'zo L.J v""zo' 
\lfE'I' 

But ,u{} = 0 by condition (iv) of 4.2. Hence Zo ,Zo 

,uZo = L ,uv""zo = L v\If' 
\lfE'I' \lfE'I' 

which is conclusion (ii) of the lemma. 
It follows immediately from the definition of the sets J\If that for each 'I' E 'I' 

we have 'l'J\If-1 = r - J\If so that 'l'V\If-1 = W - V\If' Since W - V\If = {zo} II 
U '1" i= 'l'V\lf1 Em, condition (iii) of 4.2 gives 

(5.3.2) Lv = 1fI* (Lw_v ). 
",_I 00 'II 

On the other hand, by 4.2(ii) we have L = Lw_v + Lv . Thus (5.3.2) can 
'" '" be rewritten in the form Lv = 1fI* (L - Lv ) ; in particular, we have 

",_I 00 '" 

(5.3.3) ,uv I = 'I':(,uz -,uv z) = 'I':(,uz - v\If)' 
",- , ",(zo) 0 'II' 0 0 

Since Lv _I is a D-conformal density, we have 
'II 

-I Dd D d d,uv_ =.9(zo''I' zo") ,uV_I=A\If,z ,uv_ I ' 
'II I, 'II(zo) '" 0" 

where the last equality follows from Proposition 2.4. Hence, equating the total 
masses of the two sides of (5.3.3), we obtain 

f A~,zo d,uv,,_, = f d('I':(,uzo - v\If)) = f d(,uzo - v\If) = 1 - f dV\If' 

and conclusion (iii) of the lemma is established. 
It remains to show that conclusion (iv) holds if S = g , 11} and Zo E I (~ , 11) . 

Since the involution r = rC '1 satisfies r~r = C l and rl1r = 11- 1 , we have 
rrr = r; furthermore, rJ~r = Je, and rJ'1r = J'1-I. On the other hand, 
since Zo E 1(~,11) we have rzo = zo° Hence ~-I = {YZo:y E Je,} = 
{ryrzo: y E J~} = r~. By condition (iii) of 4.2 it follows that r:OLf{ = 

Lv . In particular, r* v~ = Vrl. Taking total masses of both sides gives 
~_I 00 ~ 
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I dvc ' = I dvc;' The same argument shows that I dVT/-' = I dVT/' This 
establishes (iv) and completes the proof of the lemma. 0 

The proofs of Propositions 5.1 and 5.2 will require combining Lemma 5.3.3 
with the elementary considerations covered by the following two lemmas. 

5.4. Lemma. Let J1. and J1.o be measures of finite total mass on a measurable 
space (X,~). Suppose that 0 :::; J1.o :::; J1.. Let C be a Borel set such that 
J1.( C) ~ J1.o(X). Let f be a measurable, nonnegative real-valued function on X 
such that inf f(C) ~ sup f(X - C). Then Ix f dJ1.o :::; Ie f dJ1.. 
Proof. We write J1. = J1.o + J1.! ' where J1.! is again a measure on (X,~). We 
have 

so that 

r fdJ1.o :::; (supf(X - C))J1.o(X - C):::; (inff(C))J1.) (C) :::; r fdJ1.!. 
lx-e le 

Hence 

r f d J1.o = r f d J1.o + r f d J1.o:::; r f d J1.o + r f d J1.) = r f d J1. . 
lx le lx-e le le le 

o 

5.5. Lemma. Let a and b be numbers such that 0:::; a :::; ! and 0:::; b :::; 1, 
let y be an isometry of H3 and let z be a point in H3. Suppose that v is a 
measure on S 00 such that 

(i) v:::; A z ' 
(ii) v(Soo):::; a, and 

(iii) Isoo).~,zdv~b. 
Then 

. 1 a(l - b) 
dlSt( z , y • z) ~ 2" log b (1 _ a) . 

Proof. We let h denote the constant dist(z, y. z), and set c = coshh and 
s = sinh h. We let ). denote the function). . We identify H3 conformally Y,z 
with the unit ball in R3 in such a way that z is the origin (so that Soo has the 
round metric centered at z) and y -I . z is on the positive vertical axis. 

According to 2.4, we have ).(0 = .9'(z, y-I . z, 0 for all ( E Soo' Hence 
by (2.1.1), ). is given by the formula 

-I ).(() = (c - s cos ¢) 

where ¢ = ¢( () is the angle between the positive vertical axis and the ray from 
the origin through (; thus ¢ is the polar angle of ( in spherical coordinates. 

Set A = A z . Since Soo has the round metric centered at z, the measure 
A is obtained by dividing the area measure on the unit sphere by the area 4n 
of the sphere. In spherical coordinates e and ¢ on the unit sphere we have 
dA = (lj4n) sin¢d¢d8. 
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Set ¢o = arccos(1 - 2a), and let C c Soo· denote the spherical cap defined 
by the inequality ¢ ~ ¢o' Then we have 

A(C) = 4~ fo27t fo<PO sin¢d¢dO = ~(1 - cos¢o) = a. 

Thus by hypothesis (ii) we have A(C) ~ v(Soo). Observe also that since it is 
given by the function (c-s cos ¢)-1 , which is positive and monotone decreasing 
for 0 ::; ¢ ::; n, we have infit( C) ~ sup it(8 - C). Since we also have v ::; A 
by hypothesis (i), we may apply Lemma 5.4 with f = it2 to obtain 

{ it2 dv::; {it2 dA = _1 [27t {<Po sin¢ d¢dO 
lsoo 1c 4n 10 10 (c - SCOS¢)2 

_! {<Po sin¢ d¢- ~ (_1_ _ 1 ) 
- 210 (c - SCOS¢)2 - 2s c - s c - cos¢o 

where the last step follows from the substitution u = c - s cos ¢. Recalling that 
cos ¢o = 1 - 2a and using hypothesis (iii), we find that 

b < [ it2 dv < a . - 1 s - (c - s) (c - s + 2as) 
00 

After rewriting c and s respectively as ! (eh + e -h) and ! (eh - e -h), and 
simplifying, we conclude that e - 2h ::; a (1 - b) / b (1 - a). 0 

Proof of Proposition 5.1. Suppose that rand 8 satisfy the hypotheses of the 
proposition, and let Zo E H n be an arbitrary point. 

We wish to show that 

TEaldist(zo' ~. zo) ~ ~ log((k - 1)(2k - 1)). 

In particular, rand 8 satisfy the hypotheses of Lemma 5.3, and so there exist 
a number D E [0, 2], a conformal density L = (f.1..z) , and a family of Borel 
measures (vlfI)IfIE'I' (where \}I = 8 II 8-1), for which conclusions (i)-(iii) of 5.3 
hold. But the hypotheses of 5.1 imply that L is a constant multiple of the 
area density .sf ; hence D = 2. Since f.1.. has total mass 1 by 5.3(i), we must 

Zo 
in fact have L =.sf . 

By 5.3(ii) we have 

1 = L vlfI(Soo) = L(v.;(Soo) + vel (Soo))' 
IfIE'I' ';ES 

Hence for some ~o E 8 we have V~ (S ) + Vr I (S )::; 1/ k. It follows that for 
1:.0 00 1:.0 00 

some lfIo E {~o' ~~1} we have vlflo(Soo)::; 1/2k. 
We set it = it and v = v -I • By 5.3(iii) we have lfIo, Z lfIo 

121 it dv = 1 - v (S ) ~ 1 - (v.; (S ) + vel (S )) ~ 1 - -k . s lfIo 00 0 00 0 00 
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Furthermore, it follows from 5.3(ii) that v ::; fl = A . Hence we may apply 
Zo Zo 

Lemma 5.5 with z = zo' Y = lfIo a = 1/2k, and b = 1 - l/k. This gives 

dist(z, lfIo ' z) ~ ~ log«k - 1)(2k - 1)). 

But since lfIo = ~t ,we have dist(z, lfIo'Z) = dist(z, ~o'z), and the conclusion 
follows. 0 

Proof of Proposition 5.2. Suppose that r, ~ , and 1'/ satisfy the hypotheses of 
the proposition. Let Zo E H n be any point; we wish to show that 

max( dist( Zo ' ~ . zo) , dist( zo' 1'/ • zo)) ~ log 3. 
Set I = I (~ , 1'/). It follows from Proposition 1.15 that 

max(dist(zo' ~. zo), dist(zo' 1'/' zo)) ~ max(dist(zl' ~. Zl)' dist(zl' 1'/' zl))' 

where z 1 denotes the orthogonal projection of Zo onto I. Hence we may 
assume without loss of generality that Zo E I . 

In particular rand S = g, 1'/} satisfy the hypotheses of Lemma 5.3, and 
so there exist a number D E [0, 2], a conformal density L = (flz) and a 
family of Borel measures (vf/I)f/lE'I' (where 'I' = g, ~-I, 1'/, 1'/-I}) , for which 
conclusions (i)-(iv) of 5.3 hold. But the hypotheses of 5:2 imply that L is a 
constant multiple of the area density .S1' ; hence D = 2. Since flz has total 

o 
mass 1 by 5.3(i), we must, in fact, have L =.S1' . 

By conclusions (ii) and (iv) of 5.3 we have 1 = 2v~(Scx,) + 2vq(Soo) so 
that either v~(Soo) or vq(Soo) is ::; 1/4. By symmetry we may assume that 
v~(S )::; 1/4. We set A = Arl . By 5.3(iii) and (iv) we have 
~ 00 ~ ,~ 

( 2 3 is A dv~ = 1 - Vel (Soo) = 1 - v~(Soo) ~ 4"' 
Furthermore, it follows from 5.3(i) that v~ ::; A. Hence we may apply Lemma 
5.5 with v = v~, Y = lfIo' a = t, and b = i· This gives dist(zo' C l . zo) ~ 
log 3. Since dist( Zo ' ~ . zo) = dist( Zo ' C 1 • zo) , the conclusion follows. 0 

6. BONAHON SURFACES AND SUPERHARMONIC FUNCTIONS 

The results of §5 depend on the hypothesis that every r-invariant conformal 
density is a constant multiple of the area density, where r is the given free 
Kleinian group. According to Proposition 3.9, this is always true if every pos-
itive, r-invariant superharmonic function on H3 is constant. Thus in order 
to apply the results of §5 one needs a geometric condition that guarantees that 
the hyperbolic manifold M(r) admits no nonconstant positive superharmonic 
functions. In this section we describe such a condition. Very similar conditions 
have been used in Thurston [Th, 8.12] and, later, in Sullivan [Su3], Bohanon 
[Bo], and Canary [Cal]. 

For our applications we need only consider Kleinian groups r that contain no 
parabolics and satisfy M(r) = N(r). We will restrict attention to these groups 
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whenever convenient. While the complications that arise from the existence of 
parabolics can be dealt with, it would unnecessarily complicate the exposition 
to do so here. 

6.1. Let L be a closed 2-manifold, not necessarily connected. Let u E 
H2 (L; Zj2) denote the fundamental class of L, i.e., the sum of the images 
under inclusion of the fundamental classes of the components of L. A map 
J: L --> M will be said to be null-homologous if the class 1: (u) E H2 (M; Z j 2) 
is trivial. Suppose that J: L --> M is a null-homologous map and that P is a 
point of M - J(P). We will say that P is strictly enclosed by J if the class 
1:(u) E H2(M - {P}; Zj2) is nontrivial, where we are regarding J as a map 
from L to M - {P}. We will say that a point P E M is enclosed by the 
null-homologous map J if either P E J(L) or P is strictly enclosed by J. A 
compact set K will be said to be enclosed by J if every point of K is enclosed 
by J. 
Proposition. Let f' be a Kleinian group without parabolics such that M(f') = 
N(f'). Suppose that fj: L j --> M is a sequence oj maps Jrom closed 2-maniJolds 
into M such that every compact subset oj M(f') is enclosed by some fj. IJthere 
exists a constant V such that the volume oj nbhdl fj(L) is less than V Jor all 
j then every positive superharmonic Junction on M is constant. 
Proof. This statement is proved by an argument given in [Th, 8.12] and [Cal, 
Theorem 7.1]. In that argument it is assumed that M has k simply degenerate 
ends with neighborhoods homeomorphic to Sl x [0, 00) , ... , Sk x [0, 00) . The 
argument is applied to a sequence of maps fj: L --> M where L = L j is the 
disjoint union of SI ' ... , Sk and where the restriction of fj to Si is homotopic 
to the inclusion of Sj x {O} into M. The argument uses two properties of these 
maps. First that there is a bound on the volume of the sets nbhd l (fj(L)) and 
second that a flow line that exits an end of M must pass through infinitely many 
of these sets. The second property follows immediately from our hypothesis that 
every compact set in M is enclosed by one of the maps fj. 0 

The rest of this section is devoted to a description of a geometric construction, 
due to Bonahon, of maps that satisfy the hypotheses of Proposition 6.1. The 
construction is a simplification of Thurston's construction of "pleated surfaces." 

6.2. Virtual triangulations. A mapping ¢ of an affine k-simplex Ilk into a 
topological space X will be said to define a virtual k-simplex in X if ¢ is 
one-to-one on the interior of each face of Ilk. Two maps ¢: 11 --> X and 
¢' : 11' --> X will be said to define the same virtual simplex if there is an affine 
isomorphism I: 11 --> 11' such that ¢ 0 I = If!. By the interior of the virtual 
simplex (defined by) ¢: 11 --> X we mean the set ¢(intll). The dimension of 
¢ is the dimension of 11. A virtual simplex ¢l: III --> X is called a Jace of a 
virtual simplex ¢ if there is an affine isomorphism J of III onto a face of 11 
such that ¢o J = ¢l' 

Let L be a topological 2-manifold-with-boundary. (We may have OL = 0, 
and L may be disconnected.) A virtual triangulation of L is a collection <I> of 
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virtual simplices in L such that 
(i) <I> contains the faces of each simplex in <1>, and 

(ii) as a set, L is the disjoint union of the interiors of the virtual simplices 
in <I>. 

(Note that two faces of a simplex may coincide.) 
For any integer i, the i-skeleton of L in a given virtual triangulation is 

defined to be the union of the interiors of all the virtual simplices of dimension 
::; i; we denote it by skeli(K). The virtual O-simplices of L will be called 
vertices. 

A virtual I-simplex ¢ in the 2-manifold-with-boundary L may be regarded 
as a (nonoriented) path in L. If ¢ is a homotopically trivial loop we shall say 
that it is degenerate. A virtual triangulation will be termed nondegenerate if it 
has no degenerate I-simplices. 

6.3. Piecewise hyperbolic structures. Let ¢: Ll ~ L be a virtual 2-simplex in a 
topological surface L. A homeomorphism h of Ll = domain ¢ onto a triangle 
in H2 that maps vertices onto vertices will be said to define a hyperbolic struc-
ture on ¢. Two such homeomorphisms h and h' will be said to define the 
same hyperbolic structure on ¢ if h' h -I is an isometry of hyperbolic triangles. 
If If!: Lli ~ L is a I-dimensional face of ¢, any hyperbolic structure on ¢ 
induces a linear metric on Lli . 

A virtual I-simplex in the interior of a virtually triangulated surface L either 
occurs as a face of two distinct 2-simplices or as two coincident faces of a single 
2-simplex. Thus if each 2-simplex in L is given a hyperbolic structure then for 
each interior I-simplex there are two linear metrics induced on Lli . A piecewise-
hyperbolic (PH) structure on L is a family of hyperbolic structures on the virtual 
2-simplices of L such that, for every interior I-simplex of L, the two induced 
linear metrics on Lli agree. A PH-structure on L determines, in a natural way, 
the structure of a (necessarily incomplete) hyperbolic 2-manifold with geodesic 
boundary on L - skelo(L). 

If ¢: Ll ~ L is a virtual 2-simplex and w is a vertex of Ll, we shall denote by 
e w (¢) the angle in the hyperbolic triangle Ll at the vertex w. For any vertex x 
of L we define the angle sum at x in a given triangulation to be ~¢, w e w ( ¢) , 
where ¢ ranges over all virtual 2-simplices of the given virtual triangulation 
and w ranges over all the vertices of domain ¢ that are mapped by ¢ to x. 
(Note that a given virtual 2-simplex ¢ can contribute as many as three terms 
to this sum.) If x is a point of L that is not a vertex, we define the angle sum 
at x to be 2n if x E intL and n if x E OL. 

Let x be any point of L and let a denote the angle sum at x. If x E int L 
we set excess(x) = a - 2n. If x E OL we set excess(x) = a - n. We call x 
a singular point if excess(x) i- O. If x E OL and excess(x) < 0, we call x a 
corner. We shall denote by singL the set of all singular points of L. It is clear 
that the natural hyperbolic structure on L - skelo (L) admits a unique extension 
to a hyperbolic structure on L - sing L . 

Given a virtual 2-simplex ¢: Ll ~ L in the PH surface L, a path in ¢(Ll) 
will be called geodesic if it has the form ¢ 0 a for some geodesic path a 
(parametrized proportionally to arc length) in Ll. A path in L will be termed 
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piecewise geodesic (PG) if it is a composition y = (¢I 0 a l ) * ... * (¢n 0 an) of 
finitely many geodesic paths supported in 2-simplices of L. The length of y is 
the sum of the lengths of the a j • Any two points in the same component of L 
can be joined by a PG path, and it is not hard to show that a metric on each 
component of L can be constructed by defining dist(x, y) to be the infimum 
of the lengths of PG paths joining x and y. It is also not difficult to verify that 
this metric agrees with the hyperbolic metric on the components of L - sing L . 
6.4. Ultrahyperbolic surfaces. We define an ultrahyperbolic structure on a vir-
tually triangulated surface L to be a PH structure such that excess(x) ;::: 0 for 
every x E int L. The ultrahyperbolic surfaces form a rich class of geometric 
objects that are natural generalizations of hyperbolic surfaces. For example, 
by a generalization of the Gauss-Bonnet theorem that applies to PH surfaces 
(c.f. [Bo, Lemme 1.9]), each component of a surface with an ultrahyperbolic 
structure must have negative Euler characteristic. The fundamental geometric 
property of these surfaces that we will need here is the version of Bonahon's 
Bounded Diameter Lemma stated below. 

Given an ultrahyperbolic surface L and a point PEL we define short(P) to 
be the infimum of the lengths of homotopically nontrivial PG loops based at P . 
If I is an interval contained in (0, 00) we define L[ as in 1.5. In particular, 
for e > 0, the e-thin part of L is the subset L(o,e)' Given a PG path y in 
L we define the length of y modulo L(O, e] to be the length, i.e, the Lebesgue 
measure, of y-I(L(e,oo»)' If P and Q are points of L then the distance from 
P to Q modulo L(O, e] is the infimum of the set of lengths modulo L(O, e] of 
PG paths from P to Q. The diameter of L modulo L(O, e] is the supremum 
over all P, Q E L of the distance modulo L(O, e) from P to Q. 

The following result is due to Bonahon [Bo, Lemme 1.1 OJ. 
Proposition. For each positive integer g and each positive number e there exists 
a constant D(g, e) such that if L is a closed ultrahyperbolic surface of total genus 
g then the diameter of a modulo L(O, e) is less than D(g, e) . 

6.5. Hyperbolically simplicial surfaces. Let us consider a complete hyperbolic 
manifold M = H n /r. A map f of a virtually triangulated (not necessarily 
connected) surface L into M will be called hyperbolically simplicial if for 
every virtual simplex ¢:.1. -+ L, the map f¢ = f 0 ¢ admits a continuous lift 
J¢:.1. -+ H n such that J¢(.1.) is a hyperbolic simplex and either (i) dimJ¢(.1.) < 
dim.1. or (ii) J¢ maps .1. homeomorphicallyonto J¢(.1.). If (ii) holds for every 
simplex of L we shall say that f is nondegenerate. If f is nondegenerate then 
for each virtual 2-simplex ¢ the map J¢ induces a hyperbolic structure on 
the 2-simplex .1. that is obviously independent of the choice of lift. The linear 
metric induced on the domain of a 1-simplex If! by an adjacent 2-simplex agrees 
with the linear metric determined by J'I/' Thus a nondegenerate hyperbolically 
simplicial map from L to M induces a PH structure on L. If we equip L 
with the PH structure induced by the non degenerate hyperbolically simplicial 
map f, then for every PG path y in L, the path f 0 y has the same length 
as y. Hence if we give each component of L the metric defined by its PH 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



PARADOXICAL DECOMPOSITIONS 265 

structure, the restriction of / to each component of .t is distance-decreasing. 
By a hyperbolically simplicial sur/ace in M we mean a pair (.t, /) , where .t 

is a closed, orientable surface equipped with a virtual triangulation, and /: .t --+ 
M is a hyperbolically simplicial map. We shall say that (.t, /) is nondegenerate 
if the virtual triangulation of .t and the map / are nondegenerate. The Euler 
characteristic and the total genus of a hyperbolically simplicial surface (.t, /) 
are defined, respectively, to be the Euler characteristic and the total genus of 
the surface .t. 

Suppose we are given a hyperbolically simplicial surface (.t, /). Then any 
small perturbation of / I skelo.t can be extended over .t to give a hyperbolically 
simplicial surface (.t, /') such that /' is homotopic to /. One first modifies 
/ in a neighborhood of the O-skeleton to make it agree with /' on the vertices. 
The restrictions to skel,.t and skel2 .t can then be successively modified to 
make them geodesic. The map / I can be made arbitrarily close to / in the 
uniform topology by choosing the initial perturbation to be sufficiently small. 

We will say that a hyperbolically simplicial surface (.t, /) encloses a com-
pact set K c M provided that the map /:.t --+ M is null-homologous and 
encloses K. 

6.6. Bohanon surfaces. A continuous map / of a topological I-manifold S 
into a hyperbolic 3-manifold M will be called geodesic if for every component 
C of S there is a covering map p: R --+ C such that /0 p is a geodesic. In the 
case where S is a simple closed curve, i.e., is homeomorphic to S' , a geodesic 
map /: S --+ M is a reparametrization of a closed geodesic in M, and thus 
has a well-defined length. 

A nondegenerate hyperbolically simplicial surface (.t, /) in M will be called 
a Bonahon sur/ace if there is a closed I-manifold S c .t such that skelo(.t) c 
S c skel, (.t) and / I S is geodesic. The following observation is contained in 
[Bo, Lemme 1.8]. 

Proposition. 1/ (.t, /) is a Bonahon sur/ace in a complete hyperbolic manifold 
M, then the PH structure induced on .t by / is ultra hyperbolic. 
Proof. We must show that the angle sum at any vertex x of .t is at least 2n. 
Let e" ... ,en be the distinct oriented virtual I-simplices of .t having x as 
initial point. Then / maps each ei to a geodesic path Yi: [0, I] --+ .t with 
initial point x. Let U denote the unit sphere in the tangent space to the 3-
manifold M at /(x). Let ui E U be the normalized tangent vector to Yi at 
O. Then the angle sum at x is equal to the length of a piecewise-geodesic curve 
Y in U whose vertices are u" ... , un. Now according to the definition of 
a Bonahon surface, the vertex x lies on a simple closed curve C c skel, (.t) 
such that / I C is geodesic. This implies that the curve Y passes through two 
antipodal points of U, and therefore has length ~ 2n. 0 

6.7. Neighborhoods of Donahon surfaces. Let (.t, /) be a Bonahon surface in 
M, and let .t be given the PH structure induced by /. Let a be a positive 
number. We shall say that (.t, /) is a-incompressible if for every homotopically 
nontrivial PG closed curve y: S' --+.t of length < a, the closed curve /0 Y is 
homotopically nontrivial in M. 
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The following proposition is proved in [Ca, Lemma 7.2]. (The pleated surface 
version is found in [Th, 8.12.1].) 

Proposition. For each positive integer g and each positive number e there ex-
ists a constant V (g , e) such that if (L, f) is any e-incompressible Bonahon 
surface of genus g in a complete hyperbolic 3-manifold M then the volume of 
nbhd l (f(L)) is at most V(g, e). 
6.8. The following proposition, which is an immediate consequence of Propo-
sitions 6.1 and 6.7, gives a basic criterion for every positive superharmonic 
function on M(r) to be constant. 

Proposition. Let r be a Kleinian group without parabolics such that M(r) = 
N(r). Suppose that there exist positive integers gl' ... , gk and a real number 
e such that every compact subset of M(r) is enclosed by a system (LI' 1;) , ... , 
(Lk ' fk) of e-incompressible Bonahon surfaces such that the genus of Li is less 
than gi. Then every positive superharmonic function on M(r) is constant. 

6.9. Topological tameness. A 3-manifold is said to be topologically tame if it is 
homeomorphic to the interior of a compact 3-manifold. A Kleinian group r is 
topologically tame if M(r) is topologically tame. 

A theorem due to R. Canary [Cal] implies that if r is a Kleinian group 
without parabolics such that M(r) = N(r) and if r is topologically tame, 
then the hypotheses of Proposition 6.8 hold. In particular, we have the following 
special case of [Cal, Theorem 7.2]. 

Proposition. Let r be a Kleinian group without parabolics such that M(r) = 
N(r). If r is topologically tame then every positive superharmonic function on 
M (r) is constant. 

In §8 we show, by quite different methods, that the hypotheses of Proposition 
6.8 hold for most rank-2 free Kleinian groups that have no parabolics and lie on 
the boundary of the space of rank-2 free geometrically finite groups. The proof 
of our main theorem in §9 breaks into two cases that are handled, respectively, 
by the results of §8 and the above proposition. 

6.10. We conclude this section with a result that will be needed in §8. 

Proposition. Let M be a 3-manifold with an involution T such that every con-
nected component of Fix T is homeomorphic to R. Let (L, f) be a null-
homologous hyperbolically simplicial surface in M, and let Tr. be an orientation-
preserving involution of L such that f 0 Tr. = T 0 f. Suppose that for some 
component L of Fix T there are exactly two fixed points v + and v_of Tr. 
that are mapped into L by f; let s denote the compact arc in L bounded by 
f(v+) and f(v_). Then (L, f) encloses s. 
Proof. It is enough to prove that every point of sn(M - f(L)) is strictly enclosed 
by (L, f) . Let P be any point of s n (M - f(L)). By a small perturbation, as 
described in 6.5, one can approximate the map f arbitrarily well, in the uniform 
topology on the space of maps of L into M, by a hyperbolically simplicial 
map 1; that is topologically transverse to L and satisfies fl 0 Tr. = T 0 1; . In 
particular, 1; maps the finite set Fix Tr. into the I-manifold Fix T. Hence if 
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1; is close enough to f then 1; maps v + and v_into distinct components of 
L - {P} and maps the remaining fixed points of TI. into (Fix T) - L. Thus 
the hypotheses of the theorem hold when f is replaced by 1; . Furthermore, if 
1; is close enough to f then 1; maps L into M - {P} and is homotopic in 
M - {P} to f. Hence 1; strictly encloses P if and only if f does. Thus we 
may assume without loss of generality that f is topologically transverse to L. 

In this case the set f -I (L) is finite and has even cardinality since (L, f) 
is null-homologous. Let L+ and L_ denote the components of L - {P} con-
taining f(v+) and f(v_) , respectively. To say that (L, f) encloses P is 
equivalent to saying that f-I(L+) (and hence also f-I(L_)) has odd cardi-
nality. But f-I(L+) is invariant under the involution TI. (since foTI. = Tof) 
and contains only one fixed point of TI.' namely, a. Hence cardf- I (L+) is 
indeed odd. 0 

7. GIRDED SURFACES AND GIRDED 3-MANIFOLDS 

In this section we introduce a special class of Bonahon surfaces that will be 
used in the proof of our main theorem. 

7.1. Let e be a positive number. By an e-girded surface in M we mean a triple 
(L, f, S), where (L, f) is a nondegenerate hyperbolically simplicial surface 
in M and S C L is a closed I-manifold, such that 

(i) skelo(L) eSc skel l (L) ; 
(ii) each component of L - S is homeomorphic to a sphere with three 

punctures; 
(iii) f I S is geodesic, and f I C has length < e / 3 for each component C 

of S; and 
(iv)' for each component R of L - S, the map fiR induces an injective 

. homomorphism from 71:1 (R) to 71:1 (M) . 
The maps f I C , where C ranges over the components of S , are reparametri-

zations of closed geodesics. These closed geodesics will be said to be carried by 
(L, f, S). It follows from condition (ii) above that S has 3g- 3 components, 
where g is the genus of L. Hence if k denotes the number of distinct closed 
geodesics carried by L, we have 1 ::; k ::; 3 g - 3. It follows from the definitions 
that if (L, f, S) is an e-girded surface then (L, f) is a Bonahon surface. 
Note also that since no component of L is a sphere, condition (iv) of the above 
definition implies that the closed geodesics carried by (L, f, S) are nontrivial; 
in particular, the components of S are homotopically nontrivial in L. 

7.2. ProIiosition. Let e be a Margulis number for M, and let (L, f, S) be 
an e/3-girded surface in M. Then (L, f, S) is ef3-incompressible. 

Proof. Let y: SI -> L be any homotopically nontrivial PG closed curve of 
length < e/3. If y(SI) is disjoint from S, then by 7.1 (iv), f 0 y is homotopi-
cally nontrivial in M. 

Now suppose that y(SI) meets a component C of S. Then f(y(SI)) meets 
the set f(C) , which by 7.1(iii) is the support of a closed geodesic of lengthef3 
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in M. In particular, f(y(SI)) meets M(0,e/3]' But since y has length < 
e/3 and f is distance-decreasing, f(y(SI)) has diameter < e/3 and hence 
f(y(SI)) C nbhde/3(M(0,e/3]) C M(o,e)' Since e is a Margulis number for M, 
the component Y of M(O,e) containing f(y(SI)) is a Margulis tube, and the 
core of Y is the only closed geodesic meeting Y. Hence if S' :::) C denotes 
the union of all components of S that meet y(SI), then f(S' u y(SI)) C Y. 

Let Z denote the connected set S' U y(SI). Since Z is a finite union of 
geodesic arcs, it is a subcomplex of 1: in some triangulation. Hence there 
is a connected neighborhood U of Z in 1: such that Z carries n l (U). We 
may take U to be a compact 2-manifold-with-boundary contained in f- I (Y) . 
Now we let U' denote the 2-manifold-with-boundary obtained by adjoining to 
U all disk components of 1: - U , and we let U" denote the complement in 
U' of a regular neighborhood of S' in int U' . Then n I (U' ) is carried by 
Z c f-I(y), and hence (II U')#(nl(U' )) c nl(M) is cyclic. On the other 
hand, it follows from 7.1 (iv) and the construction of U" that f induces an 
injection from the fundamental group of each component of U" into n l (M) . 
Hence each component of U" has cyclic fundamental group and, therefore, 
must be an annulus. 

This implies that U' has Euler characteristic zero. Since 1: has genus > 1 , 
U' must be an annulus. Since C is a homotopically nontrivial simple closed 
curve in U' , it is a topological core of U' . But Y is a homotopically nontrivial 
closed curve in U' and, therefore, is homotopic in U' to a power of C. As 
fie is a nontrivial closed geodesic, and as the complete hyperbolic manifold 
M necessarily has torsion free fundamental group, we conclude that f 0 y is 
homotopically nontrivial as required. 0 

7.3. Proposition. Let M be a hyperbolic 3-mani/old and let e be a Margulis 
number for M. Let (1:, f, S) be an (e/3)-girded surface of total genus g in 
M. Let °1 , •.• , ok be the distinct geodesics carried by (1:, f, S), and let g; 
denote the component of M(o,e] containing 0i' Then 

f(1:) c nbhdD(g; u ... u~) , 

where D = D(g, e/3) in the notation of Proposition 6.4. 
Proof. In the metric defined by the PH structure of 1: induced by f, we have 
by Proposition 6.4 that the diameter of 1: modulo 1:(0, e/3] is less than D = 
D(g, e/3). 

Thus 1: = nbhdD (1:(0,e/3])' Since f is distance-decreasing, it follows that 
f(1:) c nbhdD(I(1:(0,e/3]))' In order to prove the proposition, therefore, it 
suffices to show that f(1:(0,e/3]) c g; u··· u ~ . 

Let x be any point of 1:(0, e/3]' Then there is a closed curve y: Sl -+ 1: 
that passes through x, is homotopically nontrivial in 1: and has length < e/3. 
If y(SI) intersects S then x is in the e/3-neighborhood of S; since f is 
distance-decreasing, it follows that f(x) E nbhde/ 3(oi) for some i. Since the 
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closed geodesic a i has length < e/3, it is clear that nbhde/ 3(a i ) is contained 
in M(O,e] and hence in ~; thus f(x) E ~ in this case. 

Finally, suppose that y(st) is disjoint from S. Then y is contained in 
some component R of 1: - S. Since y is homotopically nontrivial in 1:, the 
graph ;§ = y(st) is noncontractible in R (i.e., the inclusion ;§ --t R is not 
homotopic to a constant). Hence ;§ contains a simple closed curve C' that is 
noncontractible in R. By condition (ii) in the definition of an e-girded surface, 
R is homeomorphic to a sphere with three punctures, and hence C' is parallel 
in 1: to a component C of S. Since y has length < e/3, the curve C' has 
length < e/3 and x lies in the e/3-neighborhood of C' . Hence there is a loop 
y' based at x that is freely homotopic to the simple closed curve C and has 
length < e. Now f 0 y' has length < e and is freely homotopic to a i • Hence 
f(y'(st)) c~. In particular, f(x) E~. 0 

7.4. Girded manifolds. An e-girded surface is said to enclose a set if its under-
lying hyperbolically simplicial surface is null-homologous and encloses the set. 
Let M be a complete hyperbolic 3-manifold. We shall say that M is girded if 
there exist an integer g and a point Po E M such that for every e > 0 there 
is an e-girded surface of total genus at most g that encloses Po' A Kleinian 
group r will be termed girded if the hyperbolic 3-manifold M(r) is girded. 

Proposition. If a complete hyperbolic 3-manifold M is girded then every positive 
superharmonic function on M is constant. 
Proof. Let M be a complete hyperbolic 3-manifold and let e be a Margulis 
constant for M. We will show that every compact set in M is enclosed by an 
e/3-girded surface of total genus at most g. Any e/3-girded surface is e/3-
incompressible by Proposition 7.2 and is by definition a Bonahon surface. The 
proposition then follows immediately from Proposition 6.8. 

Let K be a compact set in M. By enlarging K if necessary we may assume 
that K is connected and that Po E K. Set D = D(g, e/3) in the notation 
of Proposition 6.4. Since nbhdD(K) is compact, there are only finitely many 
components of M(O,e] that meet nbhdD(K). Each of these is a tube around 
a geodesic of length less than e. Let e' < e/3 be a positive number that is 
less than the length of the core geodesic of any of the components of M(O, e] 

that meets nbhdD(K). Thus if a is a geodesic of length less than e' then 
the component .'T of M(o,e] that contains a is disjoint from nbhdD(K); 
equivalently, nbhdD(.'T) is disjoint from K. 

Now (t follows from Proposition 7.3 that any e'-girded surface is disjoint 
from K. Let (1:, f, S) be an e' -girded surface of total genus at most g 
that encloses the point Po' Since the set of points of M that are enclosed 
by (1:, f, S) is open and closed in M - f(1:) and since K is connected and 
contains Po, it follows that (1:, f, S) encloses K. An e'-girded surface is also 
e /3-girded. Thus we have constructed an e /3-girded surface of total genus at 
most g that encloses K, as desired. 0 
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8. GIRDED GROUPS ARE DENSE 

8.1. We shall let F denote the abstract free group on two generators x and 
y. We fix an identification of the group of orientation-preserving isometries 
of H3 with PSL2(C). The representations of F in PSL2(C) are in 1-1 corre-
spondence with points of the complex affine variety V = PSL2(C) x PSL2(C) ; 
the representation P = Pc.,,., corresponding to a point (c;, 1]) of V is defined 
by p(x) = c;, p(y) = 1]. We shall always understand V to be endowed with 
the complex topology. We shall denote by 1) the set of all points (c;, 1]) E V 
such that Pc.,,., is a faithful representation with discrete image, i.e., such that 
the group (c;, 1]) generated by c; and 1] is a Kleinian group that is free of rank 
2. According to [Ch], 1) is a closed subset of V. We shall denote by IB~ the 
set of all points (c;, 1]) E 1) such that (c;, 1]) is a geometrically finite group 
(1. 7) without parabolic elements. It follows from [Mar, Theorem 8.1] that IB~ 
is an open subset of V. We shall denote by ~ the frontier of IB~ in V; thus 
~ = IB~ -IB~. 

8.2. The purpose of this section is to prove the following result. 

Theorem. There is a dense G t5 -set It c ~ such that for every (c;, 1]) E It, the 
Kleinian group (c;, 1]) is girded. 

8.3. Note that for any (c;, 1]) E ~,the hyperbolic 3-manifold M((c;, 1])) = 
H 3/(c;, 1]) satisfies H2 (M((c;, 1])); Z/2) ~ H 2(F; Z/2) = 0 since F is free. 
Thus every hyperbolically simplicial surface in M( (c; , 1])) is null-homologous. 
In order to prove that (c;, 1]) is girded for a given (c;, 1]) E ~, it suffices to 
show that for every e > 0, every compact subset of M( (c; , 1])) is enclosed by 
some connected e-girded surface of genus 2. 

8.4. Since the details of the proof of Theorem 8.2 are rather involved, we begin 
with a rough sketch of the argument. There are two main issues. First one must 
produce, for a generic point (c;, 1]) E ~ and an arbitrary e > 0, a connected e-
girded surface of genus 2 in the hyperbolic 3-manifold M = M( (c; , 1])). Second 
one must choose this girded surface to enclose a prescribed point in M. 

To deal with the first issue we observe that an e-girded surface of genus 2 
determines three closed geodesics of length < e in M; since these geodesics 
are defined by simple closed curves in the domain surface, their homotopy 
classes are of a restricted type. Conversely, if one can realize a suitable triple 
of homotopy classes by a triple of geodesics of length < e , one can construct 
an e-girded genus 2 surface in M. That such a triple of geodesics exists for 
a generic (c;, 1]) will be deduced from a recent result due to Curt McMullen, 
asserting the density of "maximal cusps" in ~ (see Theorem 8.9). 

To deal with the second issue, we choose our e-girded surfaces to be equi-
variant with respect to suitable involutions of M and of the domain surface. 
We then apply Proposition 6.10 to conclude that our girded surfaces enclose ap-
propriately defined "reference points" in M. The existence of the appropriate 
involution of M follows from the results presented in 1.8-1.15. This stage of 
the argument depends strongly on the hypothesis that F is a 2-generator group. 
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8.5. For the rest of the section we fix, arbitrarily, a base point Wo E H3. We 
shall let p~,,, denote the covering projection from H3 to M( (I; , Y/)) . 

For any (I;, Y/) E ~ the group (~, Y/) is free of rank 2. In particular, (I;, Y/) is 
not solvable, and hence ~ and Y/ have no common fixed point. It follows by 1.8 
that each (I;, Y/) E ~ determines a line '(~, Y/) in H3. We shall write T~,,, = 
TI(~,,,); by 1.8, the involution T = T~,,, satisfies T~T = C l and Ty/T = y/-I . 

Since T~,,, normalizes (I;, Y/) , it induces an involution T~, q of M( (I; , Y/)) • 
We shall denote by F the group defined by the presentation 

2 -I -I (x, y, tit = 1, txt = x ,tyt = y ). 
We may regard F as a semi direct product of the free group F = (x, y) by the 
cyclic group (t 1 t2 = 1). Thus F may be identified with an index-2 subgroup 
of F. On the other hand, if we rewrite the presentation for F in terms of the 
generators tl = t, t2 = tx, and t3 = ty, we obtain (tl' t2 , t31 ti = t; = ti = 1) 
so that F is a free product of three groups of order 2. It follows (e.g., by the 
Kurosh subgroup theorem [K, p. 34]) that every element of finite order in F is 
conjugate to one of the tj • 

For every point (I;, Y/) E ~ the representation p" : F ----+ PSL2(C) extends 
~,,, 

to a representation p = Pc,,: F ----+ PSL2 (C) defined by p (x) = ~, p (y) = Y/ , 

p(t) = TC '1' The index of p~,,,(F) = (I;, Y/) in Fc" = p~,,,(F) = (~, y/, TC ,,) 

is exactly 2; indeed, the index is at most 2 since F has index 2 in F, and we 
cannot have F" = F" since F" is free and F" n contains an element of 

~ , q ~ , q ~ , " ~ , '/ 
order 2. It follows that p is a faithful representation with discrete image. 

Thus F" is a Kleinian group having exactly three conjugacy classes of el-
~,,, 

ements of finite order. Hence the set 2"(1;, Y/) of fixed points of elements of 
F" is the union of a locally finite disjoint family of lines in H3 each of which 
~,q 

is the fixed point set of a unique element of F~,,, ; this family consists of exactly 
three Fc q -orbits of lines. Hence Fix Tc q = p~ , q (2" (I; , Y/)) is a disjoint union 
of three geodesics in M( (I; , Y/)) • 

Explicitly, the three conjugacy classes of elements of finite order in F~,,, 
are represented by the elements T" ' = p" ,,(tj) for j = I, 2, 3. We have 

~,,,,j ~, 

T" 1 = T" ,T" 2 = T" ,,~, and T" n 3 = T" "Y/. We set 'j'(~ , Y/) = Fix T" " j" 
~ , q , ~ , " ~ , " , ~ , ~ , '/ , ~ , ~, , 

We have '1(1;, Y/) = l(~, y/). The components of FixTCq are p~,,,(lj(l;, Y/)) for 
j = 1,2,3. We shall write Lj(~' Y/) = Pc,,(lj(~' y/)). 
8.6. Proposition. For any (I;, Y/) E ~ and for j = 1,2, 3, the line 'j(l;, Y/) is 
mapped homeomorphically onto Lj(l;, Y/) by pc,,· 
Proof. Since L j (I; , Y/) is a component of Fix T~ , ,,' it is a closed subset of 
M ( (I; , y/)). Hence if the lemma were false, L j (~ , Y/) would be a closed geodesic 
and lj(~' Y/) would be the axis of a loxodromic element y of F. Let us set 
I = l(~, Y/) and T = T" '. Then T fixes , (pointwise) and hence so does 

j ~,",j 

the commutator [T, y] E F. Since F is discrete, it follows that [T, y] has 
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finite order. But the commutator subgroup of F ~ Z2 * Z2 * Z2 is torsion free, 
and hence y must commute with r. But the centralizer of r in F has order 
2 (e.g., by the Kurosh subgroup theorem) and y has infinite order; this is a 
contradiction. 0 

8.7. We let Pj(l;, 11) denote the point of Ij(l;, 11) that is closest to the base point 
wO ' and we set Pj(l;, 11) = p~,,,(P(I;, 11)) E Lj(l;, 11). The points Pj(l;, 11), 
j = 1, 2, 3, will be called the reference points of M( (I; , 11)). Thus M( (I; , 11)) 
contains exactly three reference points, and there is one reference point in each 
component of Fix T" . 

~," 

8.8. We shall let 2l denote the set of all points (I;, 11) E 1) such that the group 
(I; , 11) contains no parabolics. The following result, which will be needed for the 
proof of Theorem 8.2, was announced in [Berl]. A version of Bers's A-lemma 
can be used to complete the proof: see [McM, Corollary 1.5]. 
Proposition. The set 2l n 113 is a dense Go in 113. 
8.9. The following result, due to Curt McMullen, is the deepest ingredient in 
the proof of Theorem 8.2. McMullen has informed us that the theorem below 
is proved by a generalization of the techniques of [McM]. 
Theorem. There is a dense subset ~ of 113 such that for every (I;, 11) E ~, the 
free Kleinian group (I;, 11) is geometrically finite and has three distinct conjugacy 
classes of cuspidal subgroups (1. 5). 
8.10. The proof of Theorem 8.2 will be proved by combining the results stated 
above with the following result. 
Proposition. Let (a, fi) be a point of 1) such that (a, fi) is geometrically finite 
and contains three distinct conjugacy classes of cuspidal subgroups. Let e be any 
positive number. Then (a, fi) has a neighborhood U = Ue(a, fi) in ~ such 
that for every (I;, 11) E 2l n U, there is a connected e-girded surface of genus 2 
in M( (I; , 11)) that encloses at least one of the reference points of M( (I; , 11)) . 
8.11. Before proving Proposition 8.10, let us give the 
Proof that Proposition 8.10 implies Theorem 8.2. According to Theorem 8.9 
there is a dense set ~ c 113 such that for every (a, fi) E ~, the group (a, fi) 
is geometrically finite and has three nonconjugate maximal cuspidal subgroups. 
For each e > 0 and each (a, p) E ~, Proposition 8.10 gives a neighbor-
hood U = Ue(a, fi) of (a, p) in 113. For every e > 0 the set ~ = 
U(a,p)EI!! Ue(a, fi) is open and dense in 113. On the other hand, by Proposi-
tion 8.8, 2l n 113 is a dense Go in 113. Hence the set It = 2l n nO<nEZ W1/ n is a 
dense Go in 113. 

To complete the proof it suffices to show that for every (I;, 11) E It the group 
(I;, 11) is girded. If (I;, 11) E It then for every positive integer n there is a point 
(an' fin) E ~ such that (I;, 11) E 2l n U1/n(an ' fin)' According to the defining 
property of Ue(an , fin) (see Proposition 8.10) this means that for every n > 0 
there is a reference point z· of M( (I; , 11)) that is enclosed by a connected 

in 
(l/n)-girded surface of genus 2 in M((I;, 11)). 
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Since M( (¢ , 11) has only three reference points, it follows that there is a 
single reference point z of M that is enclosed by a connected (1/ n )-girded 
surface of genus 2 for arbitrarily large values of n; it follows at once that 
M( (¢ , 11) is girded. 0 

8.12. The rest of this section is devoted to the proof of Proposition 8.10. We 
suppose that we are given a point (0, ft) of 1) such that the free Kleinian group 
(0, p) is geometrically finite and contains three distinct conjugacy classes of 
cuspidal subgroups. We set Po = Pa,p' Po = Pa,p: H3 --+ M((o, P), and 
To = Ta,p' 

8.13. Lemma. For each component L of Fix To we have N( (0, ft) n L =1= 0. 
Furthermore, there is a constant 11 > 0 such that for every e < 11 and every 
component L of Fix To we have N[e, 00) ((0, ft) n L =1= 0. 

Proof. To prove the first assertion we choose a component I of p;;l(L). Then 
I is a component of 2'(0, ft), and hence by 8.5 we have I = Fix r for 
some order-2 element r of po(F). Recall from 1.4 that the set N( (0, ft) = 
p;;l (N( (0, ft))) = nbhd1 (hull(A(a, p»)) is (0, ft)-invariant and convex. Since r 
normalizes (0, P) (see 8.5), N( (0, ft)) is r-invariant. 

It follows that for any point z E N( (0, ft) , the midpoint of the line segment 
joining z to rz lies in N( (0, ft)) n L, and the first assertion is proved. 

It follows from the first assertion that for any component L of Fix To there 
is a number I1L > 0 such that N[ ) ((0, ft) n L =1= 0. The second assertion 

tiL ,00 

now follows if we set 11 = minL I1L ' where L ranges over the three components 
of Fix To' 0 

8.14. Let eo be a 3-dimensional Margulis constant such that conclusions (i) and 
(ii) of Proposition 1.7 hold with r = (0, ft). According to 1.7 we may take eo 
to be arbitrarily small. In particular, we may suppose eo to be chosen so that 
N[eo'oo)((o, ft)nL=I=0 for every component L of FixTo' 

By conclusion (i) of 1.7, J = N[eo'oo)((o, P) is a compact, orientable, ir-
reducible 3-manifold-with-boundary. Furthermore, J is a deformation retract 
of M( (0, ft) ; in particular, J is connected and 7r 1 (J) is a free group of rank 
2. According to [He, Theorem 5.2], any compact, connected, orientable, irre-
ducible 3-manifold-with-boundary whose fundamental group is free of rank 2 
is a genus-2 handlebody. 

We set L = 8J. Then L is a closed orientable surface of genus 2. Since 
the fundamental group of a handlebody is carried by its boundary and since J 
is a deformation retract of M( (0, ft) , the inclusion homomorphism 7rl (L) --+ 

7r 1 (M( (0, ft))) is surjective. 
Hence i = p;; 1 (L) is a connected covering surface of L Clearly i is 

invariant under the action of F on H3 defined by the representation Po' 
Restricting this action, we obtain a natural action of F on i. 

Since (0, ft) contains three conjugacy classes of cuspidal subgroups, the set 
M(~,eol((o, ft)) has three components. Each component of M(~,eo/(o, P) has 
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the form C lIT, where IT is a cuspidal subgroup of rand C is a horoball sta-
bilized by IT. Since (a, P) is free, each of these groups IT is cyclic. Thus 
M(O,eol( (a, P)) has the homotopy type of a disjoint union of three circles. 
Hence if we set .JtI = N{eo} ((a, P)), it follows from conclusion (ii) of 1.7 
that .JtI is a disjoint union of three annuli in L, all homotopically nontrivial 
in M((a, P)). 

- I - 3 - -We set .JtI = p;; (.JtI) C L C H . Each component A of .JtI is contained in 
a uniq~e horoball in H 32 which we denote by <z(A). We denote the base point 
of C(A) in Soo by C(A). The stabilizer of A in (¢, Yf) is an in3nite cyclic 
group consisting of parabolic elements, and this group leaves C(A) invariant 
and fixes C (1) . 

Since the three annuli comprising .JtI correspond to different conjugacy 
classes of (cuspidal) maximal infinite cyclic subgroups of r, their cores are 
noncontractible and (freely) nonhomotopic simple closed curves in M( (a, P)) . 
In particular, they are noncontractible and nonhomotopic in L. Hence each 
component of L -.JtI is a planar surface with three boundary curves, and at 
least two of the components of .JtI are nonseparating annuli in L. 

It is apparent from the definitions of J and .JtI that they are invariant under 
any self-isometry of M( (a, P)). Thus, in particular, J is invariant under To 
so that To induces an involution Tr, of L; .JtI is invariant under Tr,. (We 
shall sharpen this assertion in Lemma 8.16.) 

Observe also that since To is induced by an orientation-preserving isometry 
of H3 , it is itself orientation-preserving. It follows that To I J is orientation-
preserving and, therefore, so is Tr,. 
8.15. Lemma. For every component L of Fix To we have card(L n L) = 2. 
Proof. Recall from 8.14 that we chose eo in such a way that J n L = 
N.[ ) ((a, P)) n L i- 0 for every component L of Fix To' Since J n L eo ,00 

is a union of components of the fixed set of the involution To I J of the com-
pact 3-manifold-with-boundary J, it is a properly embedded I-manifold-with-
boundary in J; it has no closed components since L is homeomorphic to R 
by 8.6. Thus for each component L of Fix To, the set L n L = 8(J n L) 
has nonzero, finite, even cardinality. On the other hand, the sum of the car-
dinalities of L n L as L ranges over the three components of Fix To is equal 
to card Fix Tr, , the number of fixed points of an orientation-preserving involu-
tion of a closed connected surface which by the Hurwitz branching formula is 
at most 6. Hence we must have card(L n L) = 2 for each component L of 
Fix To' 0 

8.16. Lemma. Each component of.Jtl is invariant under Tr,. 
Proof. If the assertion is false then two components AI and A2 are inter-
changed by Tr,. Since .JtI has at least two nonseparating components, A I and 
A2 cannot both separate L; since they are interchanged by the homeomorphism 
Tr" they are both nonseparating. Hence L' = L - (AI U A2) is connected. Since 
neither AI nor A2 can contain a fixed point of Tr, and since Tr, has six fixed 
points by Lemma 8.15, Tr,1 = Tr, I L' is an orientation-preserving involution, 
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with six fixed points, of a connected surface having nonempty boundary and 
Euler characteristic -2. It then follows from the Hurwitz branching formula 
that "I.' / Tr,' is a connected surface having nonempty boundary and Euler char-
acteristic 2. But no such surface exists. 0 

8.17. It follows from Lemma 8.16 that for each component A of ~ we may 
choose a Tr,-invariant core curve SA' Having made such a choice, we set 
S = UA SA' where A ranges over the components of ~ . It follows from 8.14 
that the SA are homotopically nontrivial curves in M( (0:, p)) , that at least two 
of the SA are nonseparating curves in "I., and that each component of "I. - S 
is a three-punctured sphere. We set S = p~'(S) c I.. 
Lemma. For each component R of "I. - S, the inclusion homomorphism from 
n,(R) to n,(M((o:, P))) is injective. 
Proof. Since J is a deformation retract of M((o:, P)) by 8.14, it suffices to 
show that the inclusion homomorphism n, (R) -+ n, (J) is injective. If it is 
not, it follows from the loop theorem [He, Theorem 4.2] that some nontrivial 
element of ker(n, (R) -+ n, (J)) is represented by a simple closed curve in R. 
Since R is a three-punctured sphere, every simple closed curve in R is parallel 
to a component of aRc S. But every component of S is homotopically 
nontrivial in M( (0:, P)) and hence in J. 0 

8.18. Lemma. Every nonseparating component of S meets Fix Tr, in two 
points. If C is a separating component of S then C is disjoint from Fix Tr, 
and each component of "I. - C is Tr,-invariant. 
Proof. It follows from Lemmas 8.15 and 8.16 that Tr, is an orientation-preserv-
ing involution of "I. with six fixed points and that each component of S is 
invariant under Tr,. The Hurwitz branching formula implies that the orbit 
surface 'P = "I./Tr, is a sphere. Let q: "I. -+ 'P denote the quotient map. 

If C is any component of S, either C contains two fixed points of Tr, 
and Tr, reverses the orientation of C, or C contains no fixed point of Tr, 
and Tr, preserves the orientation of C. If C separates "I. then since the 
other components of S are Tr,-invariant, each component of "I. - C must 
be Tr,-invariant; hence Tr, preserves the orientation of C. Conversely, if Tr, 
preserves the orientation of C then q( C) is a simple closed curve and therefore 
separates 'P. Hence C = q -, (q (C)) separates "I.. 0 

8.19. Lemma. There is a Tr,-invariant virtual triangulation of "I. such that 
(i) skelo("I.) c S, 

(ii) S u Fix Tr, c skel, ("I.), and 
(iii) no virtual2-simplex has more than one edge supported in S. 

Proof. Let us label the components of S as C" C2 , and C3 , where C, and 
C2 are nonseparating curves in "I., and C3 mayor may not separate "I.. 

Consider the case in which C3 is nonseparating. Then "I.-S has two compo-
nents Y, and Y2 , each of which is the interior of a compact planar subsurface 
of "I. with three boundary curves. Since the Ci are nonseparating, Tr, reverses 
the orientation of Ci ; hence Tr, interchanges Y, and Y2 • By Lemma 8.18, 
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Y1 

FIGURE 1 

each Ci contains two fixed points of Tr.' Thus Fix Tr. is a subset of 8 YI con-
taining exactly two points of each component of 8YI • It follows (see Figure 1) 
that YI has a virtual triangulation with Fix Tr. as its O-skeleton, and in which 
no virtual 2-simplex has more than one edge supported in 8 YI . 

The induced triangulation of 8 YI is automatically Tr.-invariant, and hence 
the virtual triangulation of Y I extends to a unique Tr.-invariant virtual trian-
gulation of L; this extended triangulation clearly has the required properties. 

Now consider the case in which C3 separates L. For i = 1, 2, let Ji denote 
the component of L - C3 containing Ci . As in the proof of Lemma 8.18 we 
observe that '¥ = L/Tr. is a sphere and we let q: L -t '¥ denote the quotient 
map. Since Ji is Tr.-invariant by Lemma 8.16, Ji is a 2-fold branched cover 
of the disk q(Ji ) C '¥. But Ji is a genus-l surface with connected boundary 
and, therefore, it follows from the Hurwitz branching formula that Ji contains 
exactly three fixed points of Tr.' Hence there is a unique fixed point ui of Tr. 
lying in Ji - Ci . Now let v be any point of C3 • For i = 1, 2, there is a 
Tr.-invariant, properly embedded arc (Xi in Ji that has v and Tr.(v) as end 
points and ui as an interior point: we may in fact define (Xi = q-I(ai ) , where 
a i is an arc in q(Ji ) joining q(v) to q(u). If (Xi separates J i , then since Tr. 
clearly reverses the orientation of (Xi' it must interchange the two components 
of Ji - (Xi; this implies that Ji has even genus, a contradiction. Hence (Xi is a 
nonseparating arc in Ji • 

It follows that C~ = (XI U (X2 is a nonseparating simple closed curve in L. 
Furthermore, since C~ intersects each Ji in an arc, it cannot be parallel to CI 

or C2 . Hence if we set Sf = CI U C2 U C~, then L - Sf has two components 
Y I and Y2 , each of which is the interior of a compact planar subsurface of L 
with three boundary curves. Since the components of Sf are nonseparating, Tr. 
reverses the orientation of each component of Sf; hence Tr. interchanges YI 
and Y2 • The set 

K = ((Fix Tr.) n (CI U C2)) U {v, Tr.(v)} C 8YI 
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contains exactly two points of each component of a Y1 • It follows that Y1 has a 
virtual triangulation with K as its O-skeleton, and in which no virtual 2-simplex 
has more than one edge supported in a Y1 • Note also that the arc a = C3 n Y1 

is not boundary parallel in Y1 ; for otherwise a would be parallel to one of 
the O;i' and this O;i would separate Ji , a contradiction. It follows that we 
may choose the virtual triangulation of Y1 in such a way that a is contained 
in the I-skeleton. As in the previous case, the induced triangulation of a Y1 
is T.t-invariant so that the virtual triangulation of Y1 extends to a unique T.t-
invariant virtual triangulation of ~; and again the extended triangulation clearly 
has the required properties. 0 

8.20. For the rest of this section we fix a virtual triangulation of ~ having the 
properties stated in Lemma 8.19. Since the virtual triangulation of ~ is T.t-
invariant, it ~duces an F -invariant virtual triangulation of I:. We shall always 
understand ~ to be equipped with this virtual triangulation. 

Let (C;, 1'[) be any point in 1), and let I be a map of I: into H3. We 
shall say that I is (C;, 1'[)-good if (i) I is hyperbolically simplicial, (ii) I IS 
is geodesic, and (iii) I is F -equivariant with respect to the standard action of 
~ ~ 3 
F on ~ and the action on H associated to (C;, 1'[). Any (C;, 1'[ )-good map 
I: I: ---+ H3 induces a hyperbolically simplicial map f: ~ ---+ M((C;, 1'[}), and 
f I S is geodesic. The F -equivariance of I implies that f satisfies Tf., '1 0 f = 
f 0 T.t. If I is nondegenerate (as a hyperbolically simplicial map) then so is 
f· 
8.21. Lemma. For every (C;, 1'[) E 2{ there exists a (C;, 1'[)-good map I = 
~ ~ 3 
~''1:~---+H . 

Proof. It follows from Lemma 8.19 that skelo(I:) eSc skel l (I:). The first 
step in the construction of I is to construct a geodesic, F -equivariant map 
~ ~ 3 
fs:S---+H. 

Let us denote the components of S by C1 ' C2 ' and C3 • For i = 1 , 2, 3 , we 
choose a component Si of p;;I(C). We let Gi and Gi denote the stabilizers 
of Si in F and F, respectively. Then Gi is infinite cyclic, and it has index 
2 in Gi since Ci is T.t-invariant. Hence Gi is either infinite cyclic or infinite 
dihedral. If Yi denotes a generator of Gi then Yi has infinite order in F, and 
Yi is not parabolic since (C;, 1'[) E 2{. Hence Yi has a unique axis Zi C H3 . 

Since Gi normalizes Gi , the line Zi is Gi-invariant. 
Up to equivariant homeomorphism, each of the groups Z and D 00 has a 

unique properly discontinuous action on R. Hence there is a Gi-equivariant 
homeomorphism 1;: Si ---+ Zi' Using the maps 1; we define Is as follows. 
Given any point U E S there exist an index i E {l , 2, 3} and an element Y 
of F such that y. U E Si ; the index i is uniquely determined by u, but the 
element Y is not. We wish to define Is(u) = y- I • 1;(y . u). If Y1 is another 

~ ~ I ~ 

element of F such that Y1 • u E Si' then l5 = Y1Y- belongs to Gi , and by the 
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G\-equivariance of 1; we have 
-I ~ -I -I ~ -I ~ 

YI . J;(YI . u) = Y J . J;(Jy. u) = y . J;(y. u). 

Thus fs is well defined. It follows readily from the definition that it is F-
equivariant. The next step is to extend Is to an F -equivariant map of skel l (L) 
into H3. Let ¢: ~ --> L be a virtual I-simplex in the virtual triangulation of 
L that is not carried by S. Let f¢: ~ --> H3 denote the map that agrees with 
]so(¢ 18~) on the boundary of ~ and is geodesic in the sense that if we identify 
~ with an interval in R by any affine homeomorphism then f¢ becomes a 
geodesic path (parametrized proportionally to arc length). (In particular, if 
]s ° (¢ 18~) maps the two boundary points of ~ to the same point, then f¢ is 
constant.) There is a unique map ](1): skel l (L) --> H3 such that Pi) IS = ]s 
and such that for every virtual I-simplex ¢ in the virtual triangulation of L 
that is not carried by S we have ](1) ° ¢ = f¢. Since ]s is F-equivariant, so 
. f~(1) 
IS . 

To extend ](1) to f we may use the following construction. Let ¢: ~ --> L 
be any 2-simplex. Let m denote the barycenter of ~. Let J denote the convex 
hull of ](I)(¢(~(O))), where ~(O) denotes the set of vertices of~. Then J 
is either a hyperbolic triangle, a hyperbolic line segment, or a point. If J is 
a hyperbolic triangle we let f1 denote its centroid [F, p. 125]. If J is a line 
segment we define f1 to be its midpoint, and if J consists of a single point 
we define f1 to be this point. Now we define a map f¢: ~ --> J by stipulating 
that f¢ 18~ = f(l) ° (¢ 18~), that f(m) = f1, and that for each affine segment 
(J c ~ joining m to a point in 8~, the map f¢ I (J be geodesic (in the above 
sense). Now there is a unique map ]: L --> H3 such that] I skel l (L) = PI) 
and such that for every virtual 2-simplex ¢ in the virtual triangulation of L we 
have ](1) ° ¢ = f¢. Since PI) is F-equivariant, so is ]. It is clear from the 
construction that ] is hyperbolically simplicial and that ] I S is geodesic. 0 

8.22. Lemma. Let (~i, 11\>1 be a sequence of points in 2t that converges in 
- ~. ~ 3 .. 

~ to (0:, P). For each i 2 1 let t: L --> H be a (~l, 111)-good maE. Let 
C be any component of S and let A denote the unique component of Jij' con-
taining C. Then for any point Z E S we have limi->CXl p(z) = ((.4) in H3. 
Furthermore, if z and z' are distinct points of C and U is any neighborhood 
of ((.4) in H, then we have P (z) 1= ] i (z') for every i, and for sufficiently 
large i the line joining ] i (z) to ] i (z') is contained in U. 

(The definition of ((.4) was given in 8.14.) 

Proof. Let Fe denote the stabilizer of C under the action of F on H3 defined 
by Po' By 8.14 and 8.17, Fe is cyclic and is generated by a parabolic element 
h, and po(h) fixes (= ((.4). For each i 2 1, since ]i is a (~, 11)-good map, 
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ji(C) is a geodesic that is invariant under P"i i(h). Thus ji(C) is the axis 
~ ,,, 

of the isometry P ~i , "i (h) (which is loxodromic since (c;i, r/) E 1)). As i --t 00 

we have P~i ,,,i(h) --t po(h). Hence if U is any neighborhood of the fixed point 
, of Po (h) in H, the end points of the line j i (C) lie in U for all sufficiently 
large i. Hence for large i we have j i (C) cU. This implies the first assertion 
of the lemma. 

To prove the second assertion we observe that since the geodesic map j i I C 
is Fc-equivariant, it is nonconstant and, therefore, is a homeomorphism. This 
shows that for every i we have Ji(z) i= ji(z') and that ji(C) is the unique 
line joining ji(z) to ji(Z'). Since we have shown that ji(C) C U for large 
i , the second assertion follows. D 

8.23. Lemma. Let (c;i, 1]\>1 be a sequence of points in !2t that converges in 
1) to (0:, P). For each i ~ 1 let Ji: 1: --t H3 be a (c;i, 1]i)-good map, and let 
f i : 1: --t M ((c;i , 1]i)) be the map induced by j i . Let e be any positive number. 
Then for all sufficiently large i the triple (1:, f i ,S) is an e-girded surface. 
Proof. We must show that for sufficiently large i the hyperbolically simplicial 
surface (1:, F) is nondegenerate and conditions (i)-(iv) of the definition 7.1 of 
an e-girded surface hold. Conditions (i) and (ii) are properties of the virtually 
triangulated surface 1: and the I-manifold S C 1: that have been established 
in 8.17 and 8.19. We claim that condition (iv) holds for every i. Indeed, 
the isomorphisms Po: F --t (0:, P) and p(C, "i): F --t (c;i, r/) give rise to an 
isomorphism (well-defined modulo inner automorphisms) between (0:, P) = 
1I: 1(M((0:,P))) and (c;i,1]i)=1I: 1(M((c;i,1]i))). If we identify 1I: 1(M((0:,P))) 
and 11:1 (M( (c;i , 1]i))) via this isomorphism, then the equivariance condition 
in the definition of a good map implies that 1;,: 11: 1(1:) --t 11:1 (M((c;i ,1])i)) is 
identified (modulo inner automorphisms) with the inclusion homomorphism 
11:1 (1:) --t 11:1 (M( (0:, P))). Our claim therefore follows from Lemma 8.17. 

Next we show that condition (iii) in the definition of an e-girded surface 
holds for large i. It follows from the definition of a (c;, 1])-good map that 
for every i the map f i I S is geodesic. Now let S be any component of S. 
Then S is a core curve of some component A of .s:1' . Choose any component 
A of p;;I(A), and let FA denote the stabilizer of A in F. Then FA is also 
the stabilizer of the component C of S contained in A. By 8.14, FA is 
cyclic and is generated by an element h such that Po (h) is parabolic. Since 
(c;i, 1]i) --t (0:, P) as i --t 00, it follows that tracep", i(h) --t tracePo(h) = ±2. 

~ ,,, 
Hence the translation length of P"i i(h) approaches 0 as i --t 00. But the , ,,, 
closed geodesic defined by the map f i I S is C / FA' Hence the length of f i IS 
approaches 0 as i --t 00 and, in particular, is < e for large i. 

It remains to show that (1:, f i) is nondegenerate for large i. Recall from 
the definition (6.5) that for every virtual simplex ¢: Ll --t 1: and every i, the 
map f; = fi 0 ¢ admits a continuous lift j~: Ll --t Hn such that j~(Ll) is 
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a hyperbolic simplex and either (i) dimJ~(~) < dim~ or (ii) J~ maps ~ 
homeomorphically onto J~(~). To say that (I:, fi) is nondegenerate for a 
given i means that (ii) holds for every virtual simplex ~ of I:. It is clearly 
enough to show this for the case of a virtual 2-simplex. Since ~ has only finitely 
many simplices, it suffices to show that for each virtual 2-simplex <p there is an 
integer icp such that (ii) holds for every i ~ icp . 

Let ¢> be a virtual 2-simplex in ~ that covers <p. Let v j (j = 1, 2, 3) 
denote the vertices of ¢>. If (i) holds for a given i then the points Ji(v,), 
J i (V2) , and J i (V3) are collinear in H3. Thus we need only show that the 
Ji(V) are noncollinear for large i. Ac:?rding to conclusion (i) of Lemma 
8.19, each Vj lies in some component of S. It follows from conclusion (iii) ~f 
Lemma 8.19 that at most two of the v j can lie in any given component of S . 
~ Consi~er first the case in which all t~e v j lie in three distinct c~mponents of 
S. Let Cj deno~ the compon:nt of S containing v j , and le~ A j de~ote the 
component of J;1' containing Cj • Then the horospheres C(A,) , C(A2 ) , and 
C(A3) are dist~nct compone~ts of p~'(M{eo}((O:, fi))). This implies that the 
base points '(A) of the C(A) are three mutually distinct points in Soo' But 
by Lemma 8.22 we have for j = 1,2,3 that Ji(V) ~ ,(A) as i ~ 00. It 
follows that the three points J i (v j)' j = 1, 2, 3, are noncollinear when i is 
large. 

There remains the case in which two of the vj ' say v, and v2' lie in the 
~ ~ ~I ~ 

same component C of S, and the third, say v3 ' lies in a component C f:. C 
~ ~ , ~ ~ ~I 

of S. Let A and A denote the components of J;1' containing C and C , 
respectively. Then ,(A) and ,(A') are distinct points of Soo and hence have 
disjoint neighborhoods V and Vi in H. By the first assertion of Lemma 8.22 
we have J i (V3) E Vi for large i. On the other hand, the second assertion of 
Lemma 8.22 implies that ]i(v,) f:. ]i(v2 ) for all i and that for large i the 
line joining J i (v,) to J i (v2 ) is contained in V. Since V n Vi = 0, it follows 
that the J i (v j) are noncollinear for large i. 0 

8.24. Lemma. Let (~, 11) be any point of~, let J be any (~, 11)-good map, 
and let f: I: ~ M( (~, 11)) be the map induced by J. Let L be any component 
of Fix T.;-,,,' Then Fix Tr. C I: contains exactly two points, say P+ and P _ , 
which are mapped into L by f. Furthermore, the arc in L with end points 
f(P+) and f(P_) is enclosed by the singular surface (I:, f). 
Proof. To prove the first assertion we use the notation of 8.5: thus the com-
ponents of Fix Tf, ,,, are Lj(~' 11) for j = 1,2, 3. We must show that for 
each j there are exactly two of the six fixed points of Fix Tr. that are mapped 
by f into Lj(~' 11). The equivariance condition in the definition of a good 
map shows that J(I.(o:, fi)) = J(Fix! P ) C Fix!,. . = l.(~, 11). Hence 

j n, ,j ~,",j j 
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f(Lj(o:, p)) c Lj(~ , y/). In particular, f maps Lj(o:, p) n L into Lj(~' Y/) • 
But Lj(o:, p)nL consists of fixed points of To and has cardinality 2 by Lemma 
8.15. Thus the first assertion is proved. Since T(;;, 1'/) 0 f = f 0 Tr. by 8.20, the 
second assertion follows from the first by virtue of Proposition 6.10. 0 

Proof of Proposition 8.2. It suffices to prove that if e is a positive number and if 
(~i , y/ i ) is a sequence of points in 21 that converges to (0:, P), then for every 
sufficiently large i there exists an e-girded surface in M( (~, Y/)) that encloses at 
least one of the reference points of M( (~, y/)). According to Lemma 8.21, for 

i i -i ~ 3 i each i there exists a (~ , Y/ )-good map f : L --+ H . Let f : L --+ M( (0:, P)) 
denote the map induced by Ii. By Lemma 8.23, (L, F ,S) is an e-girded 
surface for every sufficiently large i. Thus in order to prove the proposition it 
suffices to show that for every sufficiently large i the hyperbolically simplicial 
surface (L, f i) encloses some reference point of M «(~i , y/ i)) . 

Recall from 8.17 that S has at least two nonseparating components; by 
Lemma 8.18, each such component contains at least two fixed points of Tr.' 
Thus card(S n Fix Tr.) ?: 4. On the other hand, we have Fix Tr. C Fix To, and 
To has three components. Hence there must be two points P+, P _ E S n Fix Tr. 
that lie in the same component L of Fix To' By Lemma 8.15 we must have 
L n ~ = {P+, P_}. In the notation of 8.5, we have L = LjO<~' Y/) for some 
Jo E {I, 2, 3}. Let us set 1= Ijo(O:, P), so that L = Po(l). Then ~ meets I 
in two points P+ E p;;'(P+) and P_ E p;;'(p+). 

By 8.5, I is the fixed line of T p J' = Po (tJ. ). For each i ?: 1, we 
cr, '0 0 

let Ii denote the fixed line of T;;i,,,i,jo = P;;i,,,i(tjO), and set Li = P;;i,l'/i(li). 
Since Ii is F-equivariant for every i, we have li(p_), li(p~) E Ii. Hence 
fi(p_), fi(p+) E Li. If o:i denotes the arc in Li with end points fi(p_), 
fi(p+) , it follows from Lemma 8.24 that (L, fi) encloses o:i. We shall com-
plete the proof of the proposition by showing that o:i contains a reference point 
of M( (~i , y/iU fOE- suffi~ently !arge i. ~ ~ ~ ~ 

We have P_ ,!+ E S ~c S1'. Let ~+ c A+~ and C_ c A_ denote !he 
components of Sand S1' containing P+ and P_ respectively. Since S1' = 
p;;'(N{£o}«(O:, P)) is invariant under the action of F on H3 defined by the 
representation Po and since the involution T a., p , jo fixes P _ and P+, the sets 
.1_ and .1+ are invariant under T p .. Hence (.1±) , which is the base point a., , Jo 

of the unique horoball C(.1±) containing .1±' is fixed by T P .• It follows 
Q:, ,10 

that each of the points (.1_) and (.1+) is an end point of the line I. We 
shall show that (.1_) -I (.1+), so that (.1_) and (.1+) are the two end 
points of I. 

Since the horospheres C(.1_) and C(.1+) contain the end points of I, they 
meet I orthogonally; hence each of these horospheres meets I in at most a 
single point. Since P_ -I P+, it follows that C(.1_) -I C(.1+). Thus the 
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horospheres C(1'_) and C(1'+) are~istinctcom~onentsof !~l(M{eo}((~' P)))· 
This implies that the base points ((A_) and ((A+) of C(A_) and C(A+) are 
distinct. Thus ((1'_) and ((1'+) are indeed the two end points of I. For 
each i 2': 1 , let pi denote the point of Ii that is closest to wo' By definition, 
pi = p,,; ;(pi) is a reference point of M((f.i , 17)). Let P denote the point of 

~ ,,, 
I that is closest to wo' By 1.9 we have Ii ---. I as i ---. 00, so that pi ---. P. 
On the other hand, since p+ E S+ and P_ E S_, Lemma 8.22 gives that 
Ji(p+) ---. ((1'+) and Ji(P_) ---. ((1'_) in H as i ---. 00. Thus we have a 
sequence of triples of points (Ji(p_), pi, J i(P+))i>l; the points in the ith 

;::;:;. """'-' ,....." 

triple all lie in the line Ii; and in the limit triple (((A_), P, ((A+)) , the point 
- 3 - -P lies on the line Ie H ,whereas C(A_) and ((A+) are the end points of I. 
It follows that for sufficiently large i the point pi lies between Ji(p_) and 
Ji(p+) . 

By Proposition 8.6 this means that for sufficiently large i the point pi lies 
between fi(P_) and fi(p+) , so that pi E a i for large i, as required. D 

9. ESTIMATES FOR GEOMETRICALLY FINITE GROUPS 

9.1. The following theorem is the main result of this paper. 

Theorem. Let f. and 17 be noncom muting isometries of H3. Suppose that f. 
and 17 generate a torsion free discrete group that is topologically tame, is not 
cocompact, and contains no parabolics. Then for any z E H3 we have 

max(dist(z, f.. z), dist(z, 17' z)) 2': log 3 . 

The following two results are used in the proof of Theorem 9.1 and put the 
statement in perspective. 

9.2. Proposition. Let f. and 17 be noncommuting isometries of H3 that gener-
ate a torsion free discrete group that is not cocompact and contains no parabolics. 
Then (f., 17) is a free group on the generators f. and 17· 
Proof. Set r = (f., 17) . It follows from the hypotheses that the space M = H 3/r 
is a complete, noncompact, orientable hyperbolic 3-manifold without cusps. In 
particular, the universal cover of M is homeomorphic to R3 , so that M is 
irreducible; and r = :n: 1 (M) has no free abelian subgroup of rank 2. 

It follows from [BaS, Proposition 3 and Theorem A] that if M is any 
noncompact, irreducible, orientable 3-manifold such that :n: 1 (M) has no free 
abelian subgroup of rank 2, then :n: 1 (M) is 2-free in the sense that each of its 
2-generator subgroups is free of some rank ::; 2. (This fact is also implicit in 
[Tuc; JaS, §VI.4].) Thus r is 2-free; since r is itself generated by two non-
commuting elements, it is a free group of rank 2. Hence by [K, p. 59], r is in 
fact free on the given generators f. and 17. D 
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9.3. Proposition. Suppose that ~ and 'f/ satisfy the hypotheses of Theorem 9.1. 
Then either the group (~, Yf) is geometrically finite, or we have M( (~ , Yf) = 
N((~, Yf). 
Proof. Since r =< ~, Yf > is not cocompact, it follows from Proposition 9.2 
that r is a free group. In particular, H 2(r; Z) = O. 

According to 1.4, the set N = N(r) c M(r) is a 3-manifold-with-boundary 
and a deformation retract of M(r). Thus N is aspherical and ttl (N) 2=! r, 
and therefore H2(N; Z) 2=! H2(r; Z) = O. If aN has a compact component, 
it follows that N is compact (and has connected boundary); by the definition 
(1.7) this implies that r is geometrically finite. On the other hand, if aN = 0 
then N = M(r). Hence to prove the proposition it suffices to show that aN 
is compact. 

Let a denote the set of discontinuity of r. The surface air inherits 
a conformal structure from a. According to the Ahlfors finiteness theorem 
[A], air is a hyperbolic Riemann surface that has finite area in the Poincare 
metric. Since r contains no parabolics, it also follows from Ahlfor's theorem 
that air has no cusps. Hence air is compact. We shall prove that a N is 
compact by showing that there is a continuous map of air onto aN. For this 
purpose it suffices to produce a r-equivariant surjection 8: a -+ aN, where 
N = nbhdl(hull(Ar» is the preimage of N in H3. Recall from 1.4 that N is 
convex. 

For any point ( E a let C, denote the smallest horoball based at ( that 
meets the set N. Then C, meets N in a single point; for if z and z' were 
distinct points of NnC, then, since a horoball is convex, the open line segment 
in H3 joining z to z' would be contained in N n int C, and the minimality 
of C, would be contradicted. We define 8(0 to be the point of intersection 
of C, with N. It is clear that 8(0 E aN n aC, for each ( Ea. 

The function 8: a -+ aN is obviously r-equivariant. To see that it is 
surjective, we observe that, since N is closed and convex, every point z EoN 
lies on the boundary of a hyperbolic half space Q C H3 with N n int Q = 0 . 
(One deduces the existence of such a "supporting half space" for a closed convex 
set in H3 from the corresponding fact in Euclidean space by using the projective 
model as in 1.2.) Now let C denote the unique horoball that is contained in 
Q and tangent to the plane a Q, and let ( denote the base point of C. It is 
clear that (E a and that 8(0 = z. Thus 8 is surjective. 

It remains to show that 8 is continuous. For this purpose we identify H3 
with the upper half-space model R2 x (0, 00) by an isometry that maps some 
point of Ar to 00. This guarantees that every vertical ray in R2 x (0, 00) whose 
lowest point is in N is entirely contained in N. Now let ((i) be a convergent 
sequence in a with (Xl = lim (i Ea. For 1 ::; i ::; 00 we set zi = 8((i) and 
Ci = C'j' The closure Ci of Ci in R2 x [0, 00) is a Euclidean ball of some 

radius ri , tangent to R2 x {O} at (i' and Ci n N = {zJ. Since the vertical ray 
with lowest point Zi is contained in N, the point zi must lie on the closed 
upper hemisphere Ui of the sphere a Ci . 
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We claim that rj ---> roo as i ---> 00. If this is false then after passing to a 
subsequence we can assume that ri ---> r for some r =1= roo in [0, 00]. If r > roo 
then for large enough i we have V 00 c int Cj and, in particular, Zoo E int Cj . 
This is impossible since Ci n N = {z;} c acj . Similarly, if r < roo then for 
large i we have Vi C int Coo' and again we obtain a contradiction. This proves 
the claim. 

Now suppose that (Zj) does not converge to zoo' Then after passing to a 
subsequence we may assume that Zj ---> Z for some point zEN - {zoo}, Since 
zi E C j for 1 :::; i < 00 and since 'j ---> , and rj ---> r, we have Z E Coo' This is 
impossible since Coo n N = {zoo}, Hence we must have Zj ---> zoo' This shows 
that e is continuous and completes the proof. 0 

9.4. By Proposition 9.3, the proof of Theorem 9.1 breaks up into two dis-
joint cases, according to whether the group r = (¢, 1])-which is free by 9.2-
satisfies N(r) = M(r) or is geometrically finite. The first case is covered by 
the following result. 
Lemma. Let r be a Kleinian group which contains no parabolics and is free 
on two generators ¢ and 1]. Suppose that r is topologically tame and satisfies 
N(r) = M(r). Then for any Z E H3 we have 

max(dist(z, ¢ . z), dist(z, 1]' z)) ~ log 3. 

Proof. According to Proposition 6.9 every positive superharmonic function on 
the manifold M(r) is constant. Thus by Proposition 3.9, every r-invariant 
conformal density is a constant multiple of the area density. By Proposition S.2 
we therefore have max( dist( Z , ¢. z) , dist( Z , 1]' z)) ~ log 3 for every Z E H3. 0 

9.S. The following result covers the remaining case of Theorem 9.1. 
Lemma. Let r be a Kleinian group which contains no parabolics and is free on 
two generators ¢ and 1]. Suppose that r is geometrically finite. Then for any 
Z E H3 we have 

max( dist( z , ¢ . z) , dist( z , 1] . z)) ~ log 3 . 

Proof. We use the notation of §8. Let a point z E H3 be given. Let us define 
a continuous nonnegative-valued function f Oil V by 

f(¢, 1]) = max(dist(z, ¢ . z), dist(z, 1]' z)). 

The proposition asserts that f(¢, 1]) ~ log3 for all (¢, 1]) E 1!5~, or, equiva-
lently, that f(¢, 1]) ~ log 3 for all (¢, 1]) E 1!5~. 

Every local minimum of the function f on V occurs at a point (¢, 1]) such 
that either ¢ or 1] fixes z. Indeed, if (¢, 1]) is a point of V where ¢(z) =1= z 
and 1](z) =1= z, then there exist a sequence (z) of points on the open hyperbolic 
line segment between z and ¢ (z) that converges to ¢ (z) , and a sequence (w j ) 
of points on the open segment between z and 1](z) that converges to 1](z). If 
we choose sequences (a i) and (Pi) of hyperbolic isometries converging to the 
identity, such that aj(z) = Zj and Pj(z) = w j ' then (a j¢, pj1]) converges to 
(¢, 1]) as i ---> 00, and f(a i¢, pj1]) < f(¢, 1]) for all i. Hence (¢, 1]) is not a 
local minimum of f. 
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For any point (~, rt) E 1), the elements ~ and rt of PSL2 (C) have infinite 
order in the discrete group (~, rt) , and hence have no fixed points in H3. It 
follows that f has no local minimum on the open subset (5~ of V. 

On the other hand, f is a proper function on V; indeed, for any B ~ 0 , the 
set f-I([O, BD consists of all pairs (~, rt) such that ~ and rt each move the 
point z a distance at most B, and this set is clearly compact. Hence f must 
take a minimum value on the closed set (5~. Since it has no local minimum on 
the open set (5~, it must take its minimum value on ~. Hence we need only 
show that f(~, rt) ~ log 3 for all (~, rt) E ~. 

Let <t c ~ denote the dense G t5 given by Theorem 8.2. Since f is con-
tinuous and <t is dense in ~, we need only prove that f( ~ , rt) ~ log 3 for all 
(~, rt) E <to But for any (~, rt) E <t, the Kleinian group (~, rt) is girded; hence 
by Proposition 7.4, every positive super-harmonic function on the manifold 
M(r) is constant. Thus according to Proposition 3.9, every (~, rt}-invariant 
conformal density is a constant multiple of the area density. By Proposition 
5.2 we therefore have 

f(~, 11) = max(dist(z, ~. z), dist(z, rt· z)) > 10g3. 0 

Proof of Theorem 9.1. The theorem follows immediately from Propositions 9.2 
and 9.3 and Lemmas 9.4 and 9.5. 0 

10. ApPLICATIONS TO CLOSED HYPERBOLIC MANIFOLDS 

10.1. The following result is an immediate consequence of Theorem 9.1 and the 
definition of a Margulis number given in § 1. 

Proposition. Let M = H 3/r be a closed, orientable hyperbolic 3-manifold such 
that every 2-generator subgroup of r = n I (M) has nonempty set of discontinuity 
in Soo. Then log 3 is a Margulis number for M. 0 

10.2. In this section we shall prove the 
Proposition. Let M be a closed, orientable hyperbolic 3-manifold such that the 
rank of HI (M; Q) is at least 3. Then every 2-generator subgroup of n I (M) is 
noncocompact and topologically tame. 
10.3. By combining Propositions 10.1 and 10.2 one immediately obtains the 
following result. 
Theorem. Let M be a closed, orientable hyperbolic 3-manifold such that the 
rank of HI (M; Q) is at least 3. Then log 3 is a Margulis number for M. 

10.4. Corollary. Let M be a closed, orientable hyperbolic 3-manifold such that 
the rank of HI (M; Q) is at least 3. Then M contains an isometric copy of a 
ball of radius ! log 3 in H3. Hence the volume of M is greater than 0.92. 
Proof. By Theorem 10.3, the number e = log 3 is a Margulis number for M. 
Thus M(O,e] is a disjoint union of tubes in M and, in particular, M(e, 00] =I- 0. 

It follows from the definition of M(e,oo] that the (e/2)-neighborhood of any 
point of M(e, 00] is isometric to a ball of radius e /2 in H3. This proves the 
first assertion. 
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To deduce the second assertion from the first, we use an observation due to 
Meyerhoff [Me]. Using a result due to Boroczky [Bor], Meyerhoff shows that if a 
hyperbolic manifold M contains a hyperbolic ball B(r) of a given radius r then 
the volume of M is at least 2 Vol(T)/(6a-7r) , where a = 1- arcsec(2+ sech 2r), 
and T is a regular tetrahedron in H3 whose edges have length 2r. (This is 
equivalent to the inequality Vol(M) 2: Vol(B(r))/d(r) given on p. 277 of [Me]: 
the factor sinh(2r)-2r in the definition of d(r) on p. 275 of [Me] is equal by [F, 
p. 209] to ~ Vol(B(r)).) Taking r = 1- log 3 , and using Lobachevsky functions 
as in [F, §IX.4] to compute the volume of a regular hyperbolic tetrahedron with 
edges of length log 3, one obtains the estimate Vol M > 0.92 . 0 

Proof of Proposition 10.2. Let F be any 2-generator subgroup of r = 7r1 (M) . 
Since HI (M; Q) has rank at least 3, there is an epimorphism '7: 7r1 (M) --+ Z 
such that '7(F) = {O}. In particular, F has infinite index in r and, therefore, 
is noncocompact. It remains to show that F is topologically tame. 

It follows from [He, Lemma 6.5] that '7 is induced by some map ¢: M --+ Sl 
such that ¢ is transverse to I E Sl and the surface ¢ -I (1) is incompressible; 
that is, for each component L of ¢ - \ I), we have 7r I (L) io {I}, and the 
inclusio~homomorphism 7r1 (L) --+ 7r1 (M) is injective. 

Let (MI ,PI) denote the covering space of M corresponding to the subgroup 
r l = ker'7 of r. Then ¢ is covered by a map J; from MI to the universal 
cover R of Sl . Let JJ be a graph whose fundamental group is free of rank 2, 
and let If/: JJ --+ M be a base-point-preserving map such that 1f/#(7r1 (JJ)) = F . 
Since F c ker'7 , the map If/ admits a lift Ij/: JJ --+ MI . Since JJ is compact, 
we have Ij/(JJ) C J;-I ([ -D, D]) for some positive integer D. The component 
of J;-I ([ -D, D]) containing Ij/(JJ) is a compact 3-manifold-with-boundary KI 
with 8KI cp;I(¢-I(I));hence 8KI is incompressible in MI. Wedefi~ r2 :s 
r I :s r to be the image of the inclusion homomorphism 7r I (K I) --+ 7r I (MI ) , so 
that F :S r 2 . 

Let (M2' P2) denote the covering space of MI corresponding to the sub-
group r 2. Then M2 contains a submanifold K2 that is mapped homeomor-
phicallyonto KI by P2 . Thus if we denote the boundary components of K2 by 
~I ~k ~. 

L , ... ,L ,each LJ is mapped homeomorphically by P2 onto a component 
LJ of 8 K. It is clear that K2 is a com!!!!ct core of M2 in the sense that the 
inclusion homomorphism 7r1 (K2 ) --+ 7r1 (M2 ) is an isomorphism. It is also clear 
that the ~y are incompressible. 

Thus M2 is a hyperbolic 3-manifold having a compact core whose bound-
ary is incompressible. It follows from the main theorem of [Bo] that any such 
hyperbolic manifold is topologically tame. On the othe~hand, r 2 is contained 
in r l and, therefore, has infinite index in r; hence M2 has infinite volume. 
According to [Cal, Proposition 3.2], any covering space, with finitely gener-
ated fundamental group, of an infinite-volume topologically tame hyperbolic 
3-manifold is itself topologically tame. Since F :S r 2 , it follows that F is 
topologically tame, as required. 0 
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A stronger version of Proposition 10.2 can be established: namely, that under 
the same hypothesis, every 2-generator subgroup of 7r1 (M) is in fact geometri-
cally finite. This can be proved by combining results of [Th, Chapter 9; ScS]; 
see also [Ca2]. 
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