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O. Introduction 

This paper represents the beginning of  an a t tempt  to transfer, to the study of 
outer au tomorphisms  of free groups, the powerful geometric techniques that 
were invented by Thurs ton  to study mapping  classes of  surfaces. Let F, denote 
the free group of  rank n. We will study the g roup  Out(F,) of  outer au tomor-  
phisms of  F, by studying its act ion on  a space X,  which is analogous to the 
Teichmtiller space of hyperbol ic  metrics on a surface; the points of  X,  are 
metric structures on graphs with fundamental  group F,. We begin by making 
this not ion precise. 

By a graph we shall mean a connected 1-dimensional CW-complex. The 0- 
cells will be called nodes and the l-cells edges. The valence of a node x is the 
number of  oriented edges which terminate at x, i.e. the min imum number  of 
components  of an arbitrarily small deleted ne ighborhood  of x. An N-graph is a 
graph endowed with a metric such that  each edge is locally isometric to an 
interval in l l  and  such that the distance between two points is the length of 
the shortest  edge-path joining them. An N-graph  is said to be minimal if it is 
not homotopy  equivalent  to any  proper  subgraph. Th roughou t  this paper we 
will consider only ~,-graphs which are minimal and have no nodes of  valence 
2. (A minimal N-g raph  cannot  have nodes of valence 1). 

Fix a (topological) graph R o with one node  and n edges, and choose an 
identification F--~rl(Ro). If G is an N-graph,  then a homotopy  equivalence 
g : R o ~ G  is called a marking on G. We  define two markings g l :Ro- - ,G1  and 
g 2 : R o ~ G  2 to be equivalent if there exists an isometry i: GI~G 2 making the 
following diagram commute  up to (free) homotopy :  

* Partially supported by research grants from the National Science Foundation 
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An equivalence class of markings will be called a marked graph, and the 
notation (g, G) will be used for the equivalence class containing the marking 
g: R0-*G. 

Observe that if G is an N-graph then the universal cover (~ is a simplicial 
N-tree in the sense of Morgan and Shalen [9]. A marking g: Ro~G de- 
termines an isometric action of F ,=~I(R0)  on G. Two marked graphs are 
equivalent if and only if the associated actions are conjugate by an isometry 
between the ~,-trees. 

A marking g: Ro~G determines a real-valued length function on F,. If 
weF, is a word, and g ,  is the induced map on ~z 1, then the length l(w) of w is 
the length of the shortest loop in G in the free homotopy class determined by 
g,(w). Since the length of a word is determined by a free homotopy class, we 
have l (w)= l (x - lwx) ,  i.e. l is actually a length function on conjugacy classes of 
words in F,. It is clear that equivalent marked graphs induce the same length 
function on F,. 

This length function l is a special case of those considered in [9], which are 
defined as follows. Given an isometric action of a group F on an N-tree and 
an element x of F which does not have a fixed point, there is an invariant line 
in the tree upon which x acts by translation. The length of x is defined to be the 
translation distance along this axis. Elements with fixed points are defined to 
have length zero. The action is called minimal if there are no invariant proper 
sub-trees, and is said to be abelian if every element of IF, F] has length zero. It 
is shown in [2] that non-abelian minimal actions on N-trees are determined 
up to conjugacy by the associated length function. If G is a minimal N-graph 
then a marking g:Ro--*G determines a minimal action of F, on G, since 
otherwise G would have a proper subgraph with isomorphic fundamental 
group. The action is free and hence non-abelian. Thus the length function 
associated with an equivalence class of marked graphs is unique. 

By the volume of an N-graph we mean the sum of the lengths of the edges. 
We now define the space X,  to be the set of all marked graphs for which the 
underlying minimal N-graph has fundamental group of rank n and has volume 
1. Let ~' denote the set of all conjugacy classes in F,. By the remarks above, X,  
may be embedded in IR ~ by sending a marked graph to its length function; the 
maps (g, G)--,l(c) for c e ~  give coordinate maps for this embedding. Clearly the 
origin is not in the image of this map. Moreover, the uniqueness statement 
above together with our condition that the volume of an N-graph be 1 imply 
that distinct elements of X, do not have length functions which are positive 
scalar multiples of each other. Thus, in fact, we obtain an embedding 
0: X,--*IP ~ where IP ~ is the infinite dimensional projective space associated to 
IR ~. We give X,  the topology induced by the map 0. 

There is a natural right action of the automorphism group Aut (F,) on X, 
given as follows: any automorphism c~ can be realized by a map A: Ro---,R o. If 
(g ,G)eX, ,  then (g, G).~=(go A, G). This action is well defined, and the group 
Inn(F,) of inner automorphisms acts trivially; thus we have an action of 
Out(Fn)= Aut (F,)/Inn (F,) on X, .  Note that the stabilizer of any marked graph 
(g, G) is isomorphic to the group of isometries of G, and is hence finite. 
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It is also shown in [2] that the subspace of IP "~" consisting of all length 
functions which arise from isometric actions of a given finitely generated group 
on R-trees is compact, as is the smaller space of length functions associated to 
actions for which the edge stabilizers do not have non-abelian free subgroups. 
{An edge stabilizer is a subgroup which fixes each point of a non-degenerate 
embedded arc in the lR-tree.) The actions associated to points of X,  are free, 
and hence the edge stabilizers are trivial. Therefore the closure )(,  of X,  in 1P ~ 
is compact, and the ideal points of this compactification are length functions 
arising from isometric actions, with cyclic edge stabilizers, of F, on (possibly 
non-simplicial) N-trees. The action of Out(F,) on X, clearly extends to an 
action on 37,. 

Note that this situation is very similar to that which arises in Thurston's 
classification of surface automorphisms [1 1, 3]. We are hoping that the same 
program could succeed here. in particular, we would like to consider the action 
of a single outer automorphism on )(, ,  to find a fixed point for this ho- 
meomorphism, and to analyze the structure of the automorphism in terms of 
the fixed point. Finding such a fixed point requires some knowledge of the 
algebraic topology of )(, .  Our main theorem is a major step in this direction. 

Theorem. The space X n is contractible.  

It seems likely that to prove a structure theorem for outer automorphisms 
of F, one will have to understand the entire space )( ,  of real-valued length 
functions. However, the result which we will prove here really only involves the 
combinatorial structure of a simplicial spine of the space X,. Specifically, we 
show that there is an equivariant deformation retraction of X,  onto a con- 
tractible simplicial complex of dimension 2 n - 3 .  

The action of Out(F,) on X, and hence on this subcomplex has finite 
stabilizers and finite quotient. The group Out (Fn) is known to have torsion-free 
subgroups of finite index; hence these subgroups have finite classifying spaces 
of dimension at most 2 n - 3 .  Thus we obtain the following. 

Corollary. Out (Fn) is o f  type V F L  and r e d ( O u t  (F,)) = 2 n - 3. 

We remark that the complex mentioned above was independently studied 
by Gersten, who simultaneously found a somewhat different proof that it is 
contractible. The equality in the corollary is his observation; it is an immediate 
consequence of the fact that Out (F,) contains free abelian subgroups of rank 2n 
-3 .  An example of such a subgroup is the image in Out (Fo) of the subgroup in 
Aut(F,,) generated by the automorphisms ~ : x i - , x ~ x  i and [ 3 i : x ~ x i x ~  for 
l <i<_n. 

I. A deformation retract of X. 

Fix n and set F = F~ and X = X.. 
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1.1. Definition of the retract K 

Each marked graph (g, G) in X determines a family of marked graphs, obtained 
by varying the metric on G. That is, the family consists of all marked graphs 
(gl,G1) in X for which there exists a homeomorphism h: G--*G 1 making the 
diagram 

homotopy commutative. Clearly the marked graph (gl,G1) is uniquely de- 
termined by the lengths of the edges h(e), as e ranges over the edges of G. We 
may thus parametrize the marked graphs in this family as points in the 
positive cone of a Euclidean space for which the coordinates are indexed by 
the edges of the graph G. Since marked graphs in X have volume 1, this 
parameter space is actually an open k-simplex a, where k + l is the number of 
edges of G. The map 0: a ~ I P  ~, which sends a point of ~ to the projectivized 
length function associated with the corresponding marked graph, is injective by 
the uniqueness result mentioned above and has linear coordinate functions. 
Thus 0 is a homeomorphism onto its image in IP ~ and has a continuous 
extension to a map 0 from the closure ~ of ~ into 1P ~. Each open face of (78 is 
obtained by assigning length zero to certain edges of G. The map 0 will map 
the open face into X if and only if the graph G', obtained by collapsing these 
edges of G, is homotopy equivalent to G. In this case the restriction of 0 to the 
open face is exactly the parametrization of the family of length functions 
associated to G' as described above. 

Thus X is the union of a set of disjoint open simplices. The closure of any 
of these simplices in X is homeomorphic to a closed simplex minus a col- 
lection of closed faces, and will be called an ideal simplex. The faces which are 
missing from the ideal simplex determined by (g,G) correspond to subsets of 
the edges of G whose union contains a non-trivial loop. A maximal ideal 
simplex corresponds to a graph G with the maximal number of edges; since 
such a maximal graph has 3 n - 3  edges, we have d i m ( X ) = 3 n - 4 .  

Note that if two of these ideal simplices meet, then their intersection is an 
(ideal) face of each simplex. Thus there exists a simplicial complex X* in which 
X embeds as a union of open simplices. This complex is constructed from a 
disjoint union of closed simplices, containing a closed k-simplex for each ideal 
k-simplex in X, by identifying a closed k-simplex with a face of a closed k + 1- 
simplex whenever the same relation holds among the corresponding ideal 
simplices in X. 

At this point it is convenient to replace our space X by a deformation 
retract Y which is somewhat simpler. The subspace Y consists of those points of 
X represented by marked graphs (g,G) with the property that G has no 
separating edges. If cr is an ideal simplex of X represented by a marked graph 
(g,G), where G has separating edges, then ~ meets Y in the face obtained by 
assigning length zero to each separating edge. The deformation retraction can 
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be defined by uniformly shrinking the lengths of the separating edges to zero 
while uniformly increasing the lengths of the other edges to preserve the 
volume. This deformation retraction is equivariant with respect to the action of 
Out (F). The construction above realizes Y as a union of open simplices in a 
subcomplex Y* of X*, and this retraction extends to a deformation retraction 
of X* onto Y*. 

Let (~Y*= Y * - Z  Let Y' denote the barycentric subdivision of Y*, and let 
K be the maximal full subcomplex of Y' which is disjoint from ~?Y*. Then K is 
a deformation retract of Y: The deformation retraction is performed by col- 
lapsing every simplex z in Y' to the face of r which is contained in K. Again, 
this retraction can be done equivariantly. The action of Out(F)  extends to a 
simplicial action on K. 

A vertex of K is the barycenter of a simplex in Y*; i.e. it is a marked graph 
(g,G) such that all of the edges of G have the same length. Therefore by 
retracting Y onto K we are ignoring the metric structure on the marked graphs 
and concentrating on the combinatorial structure of the space Z 

Suppose that (g, G) and (g', G') are vertices of K. The open simplex in X 
determined by (g, G) is a face of that determined by (g', G') if and only if G is 
obtained from G' by collapsing a set of edges and g equals the composition of 
g' with the collapsing map. We will say that a vertex (g, G) of K is obtained 
from (g', G') by blowing down an edge e of G' if there is a cellular homotopy 
equivalence d : G ' ~ G  which collapses the edge e, and g'-~dog. Thus a k + l -  
tuple ((go,Go),. . . ,(gk,Gk)) of vertices of K forms a k-simplex if G i can be 
obtained from Gi_ 1 by a composition d i of edge collapses, and the diagram 

dl d2 dk 
Go ~----GI ~ - . . .  ~ G k 

Ro 

is homotopy commutative. In other words, K is homeomorphic to the geomet- 
ric realization of the category of equivalence classes of marked graphs, in 
which an arrow is a sequence of blowings down. 

We can determine the dimension of K by noting that blowing down an 
edge of a marked graph decreases the number of nodes by t (otherwise the 
Euler characteristic would increase). Since a maximal graph has 2 n - 2  nodes, 
we can do at most 2 n - 3  blowings down, i.e. d i m K = 2 n - 3 .  

1.2. Labelled graphs 

A vertex (g, G) of K can be represented by a labelled graph. Each edge in the 
complement of a maximal tree in G is assigned a label, where a label consists 
of an orientation and a word in the standard basis of F=rcl(Ro).  The word 
assigned to a labelled edge is defined as follows. Choose a homotopy inverse to 
g which collapses the maximal tree to the node of R o. Each labelled edge is 
mapped to a loop in R0; the edge is assigned the word which corresponds to 
the based homotopy class of this loop. 
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Note that there are many (in fact infinitely many) labelled graphs which 

represent the same vertex of K. This is the case, for example, with all of the 
labelled graphs shown in Fig. 1. 

Different choices of a maximal tree will result in different labelled graphs 
that represent the same vertex (graphs # 2  and #3), as will different choices 
for the inverse to g (#e3 and #4). In the first case the words in the labels will 
be replaced by their images under one of a finite number of automorphisms of 
F, while in the second they will be replaced by their images under an inner 
automorphism. Of course, if the labels are permuted by an automorphism of 
the graph ( # 1  and #2), it will still describe the same vertex of K. In 
particular, if an edge e of G is attached to a single node, then the orientation 
can be omitted from the label on that edge. 

1.3. Roses 

We define the level of a vertex (g, G) of K to be the number of nodes of G. A 
vertex of level 1 will also be called a rose. By the above remarks, the roses are 
in one-to-one correspondence with conjugacy classes of unoriented, unordered 
bases of F, and the action of Out (F) on the set of roses is transitive. It is clear 
that every vertex v of K is contained in the star of at least one rose, e.g. the 
rose obtained by collapsing all of the unlabelled edges of a labelled graph 
representing v. We summarize these remarks as: 

1.3.1. Gertrude Stein Lemma. The complex K is the union of the stars of the 
roses. The stars of any two roses are homeomorphic.  [] 

We will prove our theorem by showing that the complex K is contractible. 
The strategy of the proof  is this. By the Gertrude Stein Lemma, K is the union 
of the stars of the roses. Suppose that W ~  is an arbitrary finite set of 
conjugacy classes in F. We define an integer-valued function ]l Ilw on roses by 
setting 

Ilpllw=n ~ l(w), (1.3.2'~ 
w~W 
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where l is the length function on F associated to p. The factor of n accounts 
for the fact that the marked graph representing p has edges of length 1In. We 
show that this function behaves like a non-singular Morse function on K. 
More specifically, let ' < '  be an arbitrary partial ordering on the set of roses in 
K which respects [i ]lw in the sense that if Hp]hw < IIp'llw, then p<p' .  Then for 
each rose p for which ]l P Lq w is not minimal, 

st(p)~ U st(p') 
p~ <p 

is contractible. Thus K is homotopy equivalent to the subcomplex Kmi n which 
is the union of stars of roses p for which HPIlw is minimal. By choosing W 
carefully we can arrange that Kmi n be the star of a single rose, which implies 
that K is contractible. This strategy reduces the proof to a local analysis; we 
need only understand the full subcomplex of st(p) given above. 

1.4. Examples 

For n = 2, the space Y can be easily described; it is homeomorphic  to the upper 
half-plane, and its decomposition into ideal triangles is isomorphic to the 
decomposition which is equivariant with respect to the action of GL(2, 7/) via 
the full group of isometries of the hyperbolic plane. (It is well known that 
Out (F2) is isomorphic to GL(2, 7/).) We will use labelled graphs to represent the 
marked graphs that determine the open simplices in Y. Note that, up to 
homeomorphism, there are only two graphs with fundamental group of rank 2 
that have no vertices of valence 1 or 2 and no separating edges. These are 
shown in Fig. 2. 

Suppose that (g,G) is a marked graph which is the barycenter of a 2- 
simplex cr in Y2- Then G must be homeomorphic  to the graph in Fig. 2 which 
has three edges, and each edge must have length 1/3. With respect to the 
length function associated with (g, G), exactly six conjugacy classes in F 2 have 
length 2/3. Moreover there exists a basis {u,v} of F 2 such that the set 
{u, u-  1, v, v-  1, uv, v- 1 u-  1} is a complete set of representatives for these classes. 
Thus (g, G) is described by any of the labelled graphs in Fig. 3. 
The barycenters of the 1-faces of c~ are described by the labelled graphs shown 
in Fig. 4. 

Fig. 2 

IIl 
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The group F 2 has the property that any automorphism which induces the 
identity on its abelianization is inner. It follows that the six-element set above 
is unique up to the action of the inner automorphism group of F 2. If we now 
fix a basis of Fz/[F 2, F2], we may associate to each primitive element x of F 2 an 
element of Q w {oo} by taking the ratio of the coordinates of its image in the 
abelianization. This number determines the set {x,x-1} up to conjugacy. Thus 
the six elements {u,u -1, v, v - l ,uv ,  v - l u  - t  } give rise to three extended rational 
numbers a/b, c/d, and (a+c)/(b+d) such that a d - b c =  _+1. Conversely these 
numbers characterize the six elements up to the action of Inn(F2). 

Thus each ideal 2-simplex in Y is uniquely described by a set of three 
rational numbers as above. It contains all of its open 1-faces, each of which is 
determined by two of the three numbers and consequently is contained in 
exactly one other 2-simplex. The vertices of each 2-simplex are missing. It 
follows that Y is homeomorphic  to the upper half-space by a homeomorphism 
that takes the ideal 2-simplices in Y to those in the Farey diagram of the 
modular  group (Fig. 5). 



Moduli of graphs and automorphisms of free groups 

C) 
Fig. 6 

~ v 

99 

The complex K in this case is a tree. The vertices are the barycenters of the 
ideal simplices and there is an edge joining the barycenter of each 2-simplex to 
that of each of its faces. Thus K is the usual tree for GL(2,•). (See Bass and 
Serre [1].) The space X 2 contains, in addition, ideal 2-simplices determined by 
marked graphs which are decribed by the labelled graphs of the type shown in 
Fig. 6. These ideal simplices are disjoint. Each is missing its vertices and two of 
its open l-faces, and is adjoined to Y along the third. There is exactly one such 
simplex attached to each ideal l-simplex in E Thus X 2 is constructed from Y 
by attaching a "fin" along each ideal 1-simplex. 

For n > 3, the space Yn is not as well behaved as Y2. To begin with, it is not 
a manifold; a codimension 1 ideal simplex may be a face of either two or three 
maximal simplices. The complex K is also much more complicated. When n 
=3,  for example, the link of a level 1 vertex is a 2-torus with 12 disks attached, 
forming a complex which is homotopy equivalent to a wedge of eleven 2- 
spheres. 

2. T h e  star o f  a rose 

We will now concentrate on the star in K of a single rose p. Recall that a 
vertex v of K is joined to p by an edge if and only if v and p are represented 
respectively by markings g: Ro~G and r: Ro--+R for which there exist a se- 
quence of edge collapses G--*G~ I-+. . .~G2~R making the following diagram 
commute up to homotopy. 

G~G l 1~ . . . .  G2--+R 

Let d: G--+R denote the composit ion of these edge collapses. Then d is a 
homotopy equivalence which collapses a subgraph T of G to the node of R. It 
follows that T is a tree. Since the number of edges of G that are not in T equals 
the number of edges of R, we see that  Tis a maximal tree in G. 

The commutativi ty of the above diagram together with the fact that d is a 
homotopy equivalence means that the marking g is determined up to ho- 
motopy by d and r. Thus we temporarily ignore the markings and study the 
process of collapsing edges, and the inverse process of blowing up edges. It is 
helpful to introduce a combinatorial  description of these processes. 
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2.1. Combinatorial graphs 

A nice definition of a combinatorial graph is that coined by Gersten [4]: A 
graph is a set G together with an involution x ~  and a retraction t from G 
onto the fixed set N(G) of the involution. The elements of N(G) are the nodes 
of G and the elements of E(G)=G-N(G) are the oriented edges. To realize G 
as a CW-complex, one takes N(G) as the set of 0-cells and, for each orbit 
{e,~}cE(G) adds a 1-cell with boundary {t(e),t(~)}. Thus the involution in- 
terchanges the orientations of an edge, and t assigns to each oriented edge its 
terminal node. The combinatorial graphs form a category in which the mor- 
phisms are functions between the underlying sets which respect the retractions 
and involutions. These correspond to cellular maps which may collapse l-cells. 
The combinatorial structure on a graph can also be specified, as by Bass and 
Serre [1], by giving the sets N(G) and E(G), the involution on E(G) and the 
terminal vertex map t: E(G)-,N(G). 

In the sequel we assume that the reader can easily translate between the 
combinatorial and topological structures on graphs. We therefore may some- 
times intermix the two points of view without explicitly stating which approach 
we are using. 

2.2. Collapsing trees 

Let (r, R) be a rose. By the discussion above, the vertices of the star of (r, R) in 
K correspond to surjective morphisms d: G---,R for which the inverse of the 
node of R is a maximal tree in the graph G. We will show that such mor- 
phisms correspond to certain "complete" collections of subsets of E(R). In fact, 
the star of (r,R) is isomorphic to a poset of complete collections, partially 
ordered by inclusion. A complete collection of subsets of E(R) has a simple 
geometric description in terms of Venn diagrams, which we will use through- 
out the rest of the paper. 

Definition. Two subsets A and B of E(R) will be said to be compatible if one of 
the four sets Ac~B, Ac~B, A n B  and Ac~B is empty, where X denotes the 
complement of X in E(R). If A and B are not compatible, we say A crosses B. 
A collection of subsets of E(R) is complete if it consists of pairwise compatible 
subsets of E(R) and is closed under set-theoretic complement. 

Proposition 2.2.1. There is a one-to-one correspondence between complete col- 
lections of subsets o]' E(R) and morphisms d: G ~ R  for which the inverse image of. 
the node of R is a maximal tree in G. 

Proof. Let x denote the node of R. Let d: G--,Tbe a morphism with T=d- l (x )  
a maximal tree in G. We will define, for each (directed) edge e of T, a subset e, 
of E(R) such that the collection {e, : esE(T)} is complete. 

An edge e of T separates Tinto  two components. Let T~ denote the subtree 
of T - { e }  which contains the terminal vertex t(e) of e. We define the subset e, 
of E(R) to be the set of all edges of R of the form d(f), where f is an edge in 
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E(G)-E(T) and the terminal vertex of f is contained in T .  Note that d 
restricts to a bijection between E(G)-E(T) and E(R). 

Let e and f be two edges of T. Since T-{e , f }  has at most three com- 
ponents, it follows that one of the four sets 

e ,  n f , ,  ~ , n . f , ,  e,  n f , ,  ~ , n y ,  

is empty. Thus e,  and f ,  are compatible. Note also that 0, is the set-theoretic 
complement of e , .  This shows that the set {e,: eeE(T)} is complete. 

Conversely, given a complete collection I of subsets of E(R), we define a 
graph G and a morphism d: G~R, which collapses a maximal tree T in G to 
the node of R, so that I = { e , : e e E ( T ) } .  We first define the tree T by taking 
E(T)=I with the complement operator as involution. Take N(T) to be the set 
of equivalence classes in I under the equivalence relation generated by defining 
i ~ j  whenever i is a maximal proper subset of j. Set t(i) equal to the equiva- 
lence class of i. Thus oriented reduced edge-paths in T correspond to strictly 
ascending chains of sets in I, which implies that T is a tree. Next, for each 
oriented edge e of R add an oriented edge e' to G and define t(e') to be equal 
to t(i), where i is the maximal element of I not containing e. It is straightfor- 
ward to check that t is well-defined (since the sets in I are compatible) and 
that l = { e , :  eeE(T)}. [] 

The process by which the graph G is constructed from 1 will be called 
blowing up, and the graph G will be denoted R i. Each edge of R corresponds to 
a unique edge of R t under this construction, and it will be convenient to abuse 
notation by referring to both by the same name. 

The process of blowing up can be viewed geometrically, in terms of a Venn 
diagram for the sets of I. Regard the elements of E(R) as points in the plane. 
For each pair {i,i} c I draw a simple closed curve which separates the elements 
of i from those of i. The condition that the sets in I be compatible means that 
these curves can be taken to be disjoint. The tree T has a node for each 
connected component  of the complement of this family of curves, and an edge 
joining two nodes if they lie in adjacent components. In addition, for each edge 
e of E(R) there is an edge in G = R  I joining the node in the component of e to 
that in the component  of & We illustrate this by an example, shown in Fig. 7. 

I\ i ! w \! 7.,/1 

Fig. "/ 
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In this example, we have 

E(R) = {x, ~, y, y, z, z, w, ff~} 

I = { {x, y}, {.f, y, z, z, w, ~}, { ?f, Y:}, 

{x, y, y,z,z,  w}, {y, ~}, {x,~, y,z,-~, w}, 

{y, z, ~}, {x, ~, y, w, ~}}. 

The graph  G is shown on the right. The solid lines represent the maximal tree 
T, and the dot ted lines are the edges in R I which come from the edges of R. 

Recall that we are considering only graphs G with no separating edges and 
no vertices of valence 2. Let I be a complete collection of subsets of E(R). A 
subset i in the collection I corresponds to a separating edge of R I if and only if 
i is invariant under the involution on E(R). In terms of the Venn diagram, a 
non-separat ing edge corresponds to a simple closed curve in the diagram 
which encloses some element eeE(R) but excludes 7. The graph R ~ will have 
no valence 2 vertices if and only if every subset in the collection I has more 
than one element. 

These observations lead us to the following definition. 

Definition. An ideal edge of a graph R with one node is a subset of E(R) such 
that 

(1) the set i has at least two elements but less than 2 n -  1 elements; 
(2) there is some e~E(R) with eel and ~ i .  
Let p=(r,R) be a rose. We have seen that each vertex of st(p) can be 

represented uniquely by a marked graph (g~,RX), where I is a complete col- 
lection of ideal edges of R, and gt is the composi t ion of r with a h o m o t o p y  
inverse for the collapsing m a p  R~--,R. Note  that  the collection I can be 
described independently of the choice of R as a set of conjugacy classes in F 
(cf. 1.3). 

If i is in I, then the graph obtained from R I by blowing down the edge 
corresponding to i is R J, where J = I - { i , i } .  In fact, the vertices (gl, R l) and 
(gj, R s) of st(p) are connected by an edge if and only if I c J  or J c I .  The 
following proposi t ion follows easily from these remarks. 

Proposition 2.2.2. The star of the rose (r, R) in K is isomorphic to the geometric 
realization of the poset o[ complete collections of ideal edges of R, ordered by 
inclusion. [] 

3. Reductivity of ideal edges 

3.1. Whitehead moves 

Let p = ( r , R )  be a rose, and i c E ( R )  an ideal edge of  R. Define D(i) to be the 
set of edges e~E(R) such that  eel and ~ei. Note  that D(i) is not  empty. If 
eeD(i), then when e is regarded as an edge of  the graph R li'~l, we have 
t(e)~t(~); thus we can collapse the edge {e,~} of R ~i'i~ to obtain a new rose, 
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denoted Pl- The operation P---'Pl, will be called the Whitehead move (i, e). Note 
that (i, e) = (i, ~) = (i, e) = (i, ~). 

A Whitehead move determines an edge-path of length 2 in the complex K, 
as is shown by the diagram 

R ~  . . . .  R li'l -~RICTl/{e,~} 

Ro 

In fact, we will show that any two roses in K can be joined by a path which is 
given by Whitehead moves. This is essentially a restatement of the fact that 
the Whitehead automorphisms generate Aut (F,) (cf. [12]). 

We recall briefly the definition of a Whitehead automorphism of a free 
group F, with basis {x 1, . . . . .  x~}. Let A be a subset of L = { x ~  1 ...,x,• for 
which there exists some letter a e L  such that a~A and a-~r  Then the 
Whitehead automorphism (A, a) is the automorphism which fixes a and whose 
action on L - { a ,  a-*} is given by 

1 
x - , a x a  

1 
x - - ~  x a  

x - + a x  

X - - ~ X  

if x~A  and x - l e A  

if x~A  and x -  ,CA 

if xCA and x -SeA 

if xCA and x-Xq~A. 

The relation between Whitehead moves and Whitehead automorphisms is 
described by the following lemma. 

Lemma 3.1.1. Let Po be the rose (l ,R0) in K. 7hen a rose p is obtained from Po 
by a Whitehead move if and only (['p = po'(O Jor some Whitehead automorphism 
o) given in terms of the usual geometric' basis for 7rl(Ro). In the notation 
established above, we have (po)A=po'(A,a), where A is a subset of letters 
labelling the oriented edges of R o. 

Proof This lemma is contained in the work of Hoare  [5], whose "cut-and- 
paste" operation, when applied to the coinitial graph associated to the stand- 
ard basis, corresponds to a Whitehead move. The reader is referred to [5] for a 
detailed proof of the lemma. We include here an example which illustrates the 
idea of the proof. In this example, we apply a Whitehead move to P0 in the 
case n = 5 (Fig. 8). Here the geometric basis of ~1 (R0) is {a, x, y, z, w} and the 
set A is {a, x, y, z, 2}. Note that if Po is represented by a labelled graph and 
c~eOut(F,), then the rose po-C~ is described by the labelled graph whose labels 
are the images under e of those on Po. [] 

P r o p o s i t i o n  3.1.2. K is path-connected. 

Proof Let po=(1,Ro).  As we noted in (1.2), Aut(F,) acts transitively on roses. 
Thus if p is any rose, we have p=po.q~ for some automorphism (p~Aut(F,). 
Since the Whitehead automorphisms generate Aut(F,) we have 
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X XO -1 

w 

z 

y xa ay 

Fig. 8 

p =po . (d) l . . . .  "(Ok, where each (oi is a Whitehead automorphism.  The proposi t ion 
is proved by induction on k, the case k =  1 being a consequence of  Lemma 
3.1.1. Thus we assume that there is a path in K joining Po to P o ' ( o l ' .  . . . . .  (ok-1 
and show that there is a path f rom Po to PO'(OI'' '"(Ok" By L e m m a  3.1.1 there 
is a path joining Po to Po ' (o -1 .  Thus we obtain a path a from Po ' (o -1  to 
P0 ' (oa ' - . . "  (~Jk-1" The au tomorph i sm (ok acts on K by a homeomorph i sm which 
maps a to a path joining Po to Po" (O1 ' . . . '  (o,. This proves the proposit ion.  [ ]  

3.2. Whitehead moves and the norm 

It is necessary for us to unders tand the behavior of the norm t[ ILw (1.3.2) with 
respect to Whi tehead moves. Our  analysis is similar to that done by Higgins 
and Lyndon  [6] and McCoo l  [7] for Whitehead automorphisms.  For  the 
following definition, we assume that  we have fixed a rose p =(r,  R), and a finite 
subset W o f  the set cg of conjugacy classes in F. 

Definition. Let i be an ideal edge of R, and eeD(i) .  The reductivity of the 
Whitehead move (i, e) is red(i, e )=  I[p[lw-lIplel[w �9 The reductivity of the ideal 
edge i is 

red (i) = max red (i, e). 
e~D(i) 
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The ideal edge i is reductive if red(/)>0,  zero-reductive if r ed( i )=0  and 
strictly reductive if red (i) > 0. If red (i) > red (j) for all ideal edges j of R, then i is 
maximally reductive. 

It turns out that the reductivity is an intrinsic invariant of an ideal edge. 
This is made clear by the following interpretation. For any marking g: Ro~G 
and any oriented edge eeE(G), let ]elg denote the number of occurrences of the 
oriented edge e or of ~ in the reduced edge-cycles that represent the conjugacy 
classes g,(w) for weW. An edge collapse which is a homotopy equivalence 
clearly maps reduced edge-cycles to reduced edge-cy_cles. Thus if g': Ro-*G' is 
obtained from g:Ro--*G by collapsing an edge {f ,f} and if e is an oriented 
edge in E(G)-{J; f}  then 

lel~ = le'lg, 

where e' is the image of e under the edge collapse G~G'. If (g, G) is the marked 
graph obtained by blowing up an ideal edge i of R, then red(i ,e)=lilg-lel~. 
Moreover, li[g can be expressed entirely in terms of the oriented edges of R. We 
consider the reduced edge-cycles in R which represent the elements of W. Then 
lilg equals the number of pairs of consecutive oriented edges e, f  in these edge- 
cycles with e~i andy~ i  or with eei  a n d f e i .  

Since these quantities are intrinsic, we drop the subscript g. Thus given a 
rose p, a representation (r,R) of p, and a finite set W c ~ ,  we establish the 
following suggestive notation (which is borrowed from Higgins and Lyndon). 

Notation. For  two ideal edges i and j of R, i ' j  is the number of occurrences in 
the reduced cycles representing W of e followed by.[~ where either e~i and f ~ j  

or eej and y~i. For an ideal edge i, lil=i.i. For eeE(R), leL-={e}'{e} is the 
number of occurrences of the oriented edge e or of f in these reduced cycles. 

Definition. Let W c g  ~ be a finite set of cyclic words in F, and p=(r, R) a rose. 
The star graph Sw(p) is the graph whose set of nodes is E(R) and which has an 
(unoriented) edge joining e to f for each occurrence of e and f as consecutive 
oriented edges in the reduced cycles representing r,(w) for we W. 

Note that lel can be interpreted as the valence of the node of the star graph 
representing e. We can also interpret Iil for an ideal edge i geometrically using 
the star graph and the Venn diagram representing i. To do this we map the 
star graph into the plane so that 

(1) the nodes go to the points in our Venn diagram; 
(2) each edge of the star graph intersects the simple closed curve corre- 

sponding to {i,i} at most once; and 
(3) no double point of the map lies on the simple closed curve. It is clear 

that such a map exists, although it will not usually be an imbedding. Then Ii1 is 
the number of intersections of the star graph with the curve. 

3.3. The factorization Lemma 

If p and p' are two roses whose stars in K have a non-empty intersection, then 
p' can be obtained from p by blowing up some ideal edges and then collapsing 
an equal number of non-ideal edges. The next lemma estimates II P lh w -  IbP'Jl w. 
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Factorization Lemma 3.3.1. Let p and p' be roses represented by (r,R) and 
(r', R') respeetively. Suppose that p' is constructed fi'om p by first blowing up the 
set I =  {i 1 . . . . .  ik} Of pairwise compatible ideal edges and then blowing down the 

k 

set of  ordinary edges 0 = {el . . . . .  ek}. Then II Pll w -- LI p'LI w < ~ red (i~). 
a = l  

Proof We will construct a permutation a e X  k such that for each c~=l . . . . .  k, 
e~eD(i~(~) or -O~eD(i~(~)). After renaming the ea, we may assume e, eD(i~(~). 
Then 

k k 

ilPllw--llp'llw = ~ Ii~1-- ~ fe=l 
== I ~= 1 

k 

= ~ (Ii,(~,l-te~l) 
ot= l  

k k k 

= ~ red (i~(~,, e~)< ~ red (i~,~))= ~ red (i~). 
a = l  a = l  ==1  

Consider the graph G = R  I constructed by blowing up the ideal edges in I. 
Considering edges of R as edges of G, I and O respectively comprise the sets of 
edges of maximal trees T t and T o in G. As such, the collections of cosets 
{[il] . . . . .  [ik] } and {fell  . . . . .  [ek] } form bases for the rational vector space 
C / Z ~  of l-chains modulo the l-cycles in the chain complex of G. Therefore 
we may write k 

[e~] = ~ ~,~[i~] 
/~=1 

in C / Z , ,  where the matrix fermi is non-singular. In fact the coefficient ~:~ is 0, 
1 or - 1 and is non-zero if and only if {i e, ie} is an edge in the unique reduced 
path in Tt that joins the endpoints of e,. Thus e=~4=0 if and only if either 
e, eD(i~) or OeD(ip). Since Det([e~p])+O there must exist s o m e  t T e Z  k with 
1-[e~,t~)=t=O. Hence e~=t=O for all 0~, so e~eD(i~(,)). [] 

3.4. Diagrams 

The lemmas in the next two sections are concerned with the reductivities of 
two ideal edges i and j which cross, and of the four associated ideal edges i c~j, 
i c~], ic~j and ic~]. We will give the arguments in terms of geometric properties 
of the Venn diagrams for i and j. 

Consider a rose p represented by a marked graph (r, R) and two ideal edges 
i and j which cross. Choose distinct points in the plane corresponding to the 
oriented edges of R. Represent i and j by Jordan curves as in the earlier 
discussion of Venn diagrams. These curves can be taken to meet transversely in 
two points. Realize each edge of the star graph S w of our finite set W c ~  ~ as 
an arc joining the points corresponding to the appropriate ideal edges of R. 
Each of these arcs can be taken to intersect the Jordan curves transversely in 
at most one point and not to pass through the points of intersection of the two 
Jordan curves. There are four arcs of the Jordan curves that join the two 
intersection points. These are labelled c~, [:~, 7 and 6 in the diagram in Fig. 9. 
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~ rNJ 
Fig. 9 

Let a, b, c and d be the respective numbers of geometric intersections of edges 
of the star graph with ~, fl, 7 and & In the arguments that follow we will refer 
to the diagram above and assume that ~, fl, 7, & a0 b, c and d are as defined here. 

Observe that l i[=a+c and t j l=b+d.  Also observe that any edge of Sw 

joining points in ir~j with points in (ic~j) will meet [t or 7. However, edges of 
S w that join points in i c~j to points in i r~j may also meet [3 and 7. Thus 

]i ~.jl K=b + c. 
Similarly, 

I-i ~.jl <= c + d 

lir~)l <_a+b 
and 

I-i c2-jl < a + d. 

4. Existence of a reduetive edge 

4.1. The Higgins-Lyndon Lemma 

The object of the lemmas in this section is to show that if p is a rose which 
does not have minimal norm then st(p) has a non-empty intersection with 
st(p') for some rose p' with IIp'llw<]bpllw. This amounts to showing that if p 
=(r ,R),  then R has a strictly reductive ideal edge. Actually we prove a 
somewhat stronger statement, which is needed for the inductive argument in 
Sect. 6. We show that, if I is a complete set of zero-reductive edges, then there 
exists a strictly reductive ideal edge which is compatible with each ideal edge 
in I. 

We begin with a lemma which was proved in a slightly different form by 
Higgins and Lyndon [6]. Our proof is given in terms of the Venn diagrams 
described in (3.4). 

Higgins-Lyndon Lemma 4.1.1. Let p be a rose represented by (r, R) and let i and 
j be ideal edges of R which cross. Let e a n d f  be oriented edges of R with e~D(i) 
and f~O(]). Then, Jbr some choice of g equal to either e or f and k equal to one of 
ir~j, i n j ,  ir~j, ir~j, we have 

red (k, g) > min (red (i, e), red (j,f)) 

with strict inequality unless red (i, e)= red (],f). 
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Fig. 10 

Proof We may assume that red (i, e) > red (j,f). We will then assume that for 
each of the choices for k and g, red(k, g ) < r e d ( j , f )  and red (k, g)< red(i, e). 
These assumptions will lead to a contradict ion,  so we conclude that either 
red (k, g) > red ( j , f )  or red (k, g) > red (i, e) > red CJ,f). The latter inequality will be 
strict unless red (i, e) = red (],f). 

By replacing j by j if necessary we may assume e~j. We then have eight 
cases to consider, since either ~ i n j  or ~eic~j, e_ither f e i n j  or f6ir~j and 
either f e i c ~ j  or fe ic~j .  In each of these cases, by our assumptions, if esk and 
OE/r then red(k, e )<red( i ,  e), and i f f~k  and f e k  then r e d ( k , f ) < r e d ( j , f ) .  These 
inequalities imply certain inequalities involving a ,b ,c  and d for each of the 
four choices for k (cf. 3.4 for the definitions of a, b,c and d). We show that  the 
inequalities obtained this way are inconsistent_, giving us our contradict ion.  

To illustrate, suppose - ~ i ~ j , f ~ i ~ j  and f6ir~j. The diagram for i and j is 
then as shown in Fig. 10. 
The  inequalities we obtain are: 

lel - ( b  + c) __< [el -Li c~jl = red (i c~j, e) < red (i, e) 

= L e [ - ( a + c ) ~ a + c < b + c ~ a < b .  

If1 - ( b  + c) < IJ'[ - l i  c~jL = red (i ~ j , f )  < red ( j , f )  

= l f l - ( b + d ) ~ b + d < b + c ~ d < b .  

IJ'[-(a + b) <__ If[ - t i  c~j[ = red (i c~j,f) < red ( j , f )  

= I N [ - ( b + d ) ~ b + d < a + b ~ d < a .  

[el - (c + d) _-< le[ - l i  c~jl = red (i c~j, e) < red (i, e) 

= l e l - ( a + c ) ~ a + c  <c + d ~ a < d .  

Obviously the last two inequalities are contradictory.  
We omit  the complete  derivations in the other  seven cases. Instead we 

supply a table in Fig. 11, in which we give the Venn diagram and the 
inconsistent inequalities obta ined in each case. In each diagram the ideal edge i 
is represented by the circle on the left, and j by the circle on the right. This 
completes the proof  of the Higgins-Lyndon Lemma.  [ ]  
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a f  a y 

I f e  b +d~< a§ b+d~ b+c 
a+c< c*d S a+c<a+d 

�9 f b+d~<a+b 
a+c < c+d �9 f 

b+d~a.b 
o.c<o+d 

~ - o  

b+d~<o*d 
o+c< b+c 

T .  ~ �9 

b+d~<a+d 
a§ b+c 

, ,T To g �9 

Fig. 11 

b§ 
Q+C< b+c 

b+d~<a+d 
a+c < b+c 

4.2. Existence Theorems 

In [6] the lemma above is used to prove the following. 

Proposition 4.2.1. (Higgins-Lyndon). Let p be a rose, and p' and p" be roses 
obtained Jrom p by Whitehead moves. Assume El P'II w < II PII w > LI P"II w. Then there 
exists a sequence of Whitehead moves leading .from p' to p" such that for each 
intermediate rose a we have llallw < IlPllw. 

Proof Suppose P'=P'e and p " = p } .  If i and j are compatible, then !lp~'~.llw = 
t lp} lkw-red(i ,e)<l lpl lw,  and Pe, li'J is connected to each of p' and p" by White- 
head moves. 

If i crosses j, then let k and g be the edges given by applying the Higgins- 
Lyndon Lemma to the Whitehead moves (i,e) and (j,f). Note that 
IIP~llw<llPNw. If g = e  then p~ is connected to p} by a Whitehead move and, 
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since k is compatible with j, we may apply the preceding argument with p' 
replaced by pk e. If g = f  then pk is connected to p} by a Whitehead move, and 
we may apply the argument above with p" replaced by pk since i and k are 
compatible. [] 

We remark that the paths from p' to p" corresponding to these sequences 
of Whitehead moves are homotopic in K. In fact the homotopy can be realized 
by a sequence of moves in which the path is pushed across certain 2-cells in K. 
Shown in Fig. 12 are three 2-cells embedded in K which correspond to the 
three cases of the proof. The union of the 2-cells of these types is a 2- 
dimensional subcomplex of K which is the universal cover of the complex 
constructed by McCool in [7]. 

By repeated applications of the preceding proposition to an arbitrary path 
of Whitehead moves, Higgins and Lyndon also show the following 

Proposition 4.2.2. Let p and p' be roses with ]lPllw minimal. Then there is a 
sequence P=Po ,  PI . . . . .  pm=p'  o f  roses such that Pi is obtained Jrom Pi - i  by a 
Whitehead move for  i = 1 . . . . .  m and such that 

Ilp01l w --Iip~ llw . . . .  --Ilpkll w < Ilpk+ 1 H w <  . - .  < llp,,IL w 

fi)r some ke{O, 1 . . . .  ,m}. [] 

Since each application of Proposition 4.2.1 produces a homotopic path, this 
implies that ~1 ( K ) -  7r~ (Kmi,). 

We will make use of the following corollary of Proposition 4.2.2. 

Corollary 4.2.3. Let p = ( r , R )  be a rose. I f  I[Pllw is not minimal, then R has a 
strictly reductive ideal edge. [] 

In fact, using the Higgins-Lyndon Lemma we can strengthen this corollary 
to provide the following fundamental result: 

Existence Theorem 4.2.4. Let R be a rose represented by (r, R). Let  I be a 
(possibly empty) complete set o f  zero-reductive ideal edges. Then there exists a 
strictly reductive ideal edge which is compatible with each ideal edge in I. 

Proo f  Let j be a strictly reductive ideal edge of R which is compatible with the 
maximum number of ideal edges in I. I f j  crosses i for some i e I  then by the 



Moduli of graphs and automorphisms of free groups 111 

Higgins-Lyndon Lemma one of jr~i, jc~i, j n i  and .jc~i will be a strictly 
reductive ideal edge. Each of these is compatible with any ideal edge that is 
compatible with both i and j, and hence with more of the ideal edges in I than 
j. This contradicts the maximality assumption, so j must be compatible with 
every ideal edge in I. []  

We remark that in the case where W is the set of conjugacy classes of 
primitive elements in F then the existence result 4.2.3 was proved by White- 
head in [12] as a consequence of his result that the star graph for such a set W 
has a cut vertex. 

5. Outermost  intersections 

The main result of this section is the Pushing Lemma, which is a refinement of 
the Higgins-Lyndon Lemma. It is used in the proof of our theorem to make 
possible what is more or less an outermost curve argument applied to Venn 
diagrams. 

5.1. The minimax property 

We continue to work with a rose p that is represented by a marking r: R o a R  
and with a fixed finite subset W of ~. Let I be a (possibly empty) complete set 
of zero-reductive ideal edges. An ideal edge of R will be said to have the 
minimax property with respect to I if it is compatible with each ideal edge in I, 
has maximal reductivity among all ideal edges of R that are compatible with I, 
and has no proper subsets with maximal reductivity. Let i have the minimax 
property and choose an oriented edge eel such that red (i, e)= red (i). Let j be 
an ideal edge of R which crosses i. Replacing j by ] if necessary, we may 
assume that e~j. We define the outer slices of j along i to be the two ideal 
edges i n j  and i n j .  These edges are illustrated in the Venn diagram of Fig. 13. 

The Pushing Lemma states that one of the outer slices has reductivity at 
least as large as that of j. 

Pushing Lemma 5.1.1. Let I be a complete set (~['zero-reductive ideal edges. Let i 
be an ideal edge o[ R with the minimax property relative to I, and let e be an 
oriented edge of R such that eei, ~ i  and red(i, e)=red(i). Let j be an ideal edge 

,% 
' 4  / S / j 

Fi~ 13 
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Fig. 14 

compatible with I that crosses i. Then Jor one of the outer slices j' of j along i we 
have 

red (j') > red (j). 

Proof W e  a s s u m e  tha t  eej (Fig. 14 shows  the s t a n d a r d  V e n n  d i a g r a m )  a n d  tha t  
. / i s  an  o r i en t ed  edge  wi th  J'ej, j 'ej  and  red  ( / ' , f ) =  red (j). 
O b s e r v e  tha t  s ince ir is an  ideal  edge wi th  i n j  p r o p e r l y  c o n t a i n e d  in i, e c i n j  
a n d  ~ e ( i n j ) ,  it fo l lows f r o m  the  m i n i m a x  p r o p e r t y  of  i tha t  
red  (i n j, e) < red (i, e). Th is  impl ies  tha t  

lel - (b + c) < red  (i n j, e) < red (i) = le[ - (a + c). 

H e n c e  a < b, so if yeT c~j then  

red (i n j)  > red (i n j ,  j 7 ) > Ifl  - (a + d) > I f l  - ( b  + d) = red (j), 

so the  ou t e r  slice i n j  has  the  des i red  p rope r ty .  
A s s u m e  n o w  tha t )Te i  n j .  
I f  O e T n j  then,  by the  m a x i m a l i t y  of red  (i), we  have  

le] - (c + d) < red (7 r 3) < red  (i) = red  (i, e) = tel - (a + c). 

H e n c e  a < d  and,  us ing  the  a s s u m p t i o n y e i n j  we  have  

red (i n j)  > red (i n j ,  y )  > I l l  - ( a  + b) > I f l  - (b + d) = red (j), 

i.e. the  o u t e r  slice ir has  the  des i red  p r o p e r t y .  
F inal ly ,  a s s u m e  tha t  ~ s T n j .  Th is  leaves  two cases to cons ide r :  Eitherfeic~j 

or  f ~ T n j .  

Case I . f ~ i ~ j  (Fig. 15) 

~Q 
Fig. 15 

T h e  m i n i m a x  cond i t i on  impl ies  tha t  red (i n j ,  f ) <  red(i ,  e). H e n c e  

I f l  --  (b + c) -< red (i n j ) , f )  < red (i, e) = lel - (a + c). 
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Thus I f l - b < } e l - a ,  so 

red (7 c~.], ~) > {el - (a + d) > Ifl - (b + d) = red (j). 

Case II..[e? r (Fig. 16) 

Fig. 16 

By the min imax proper ty  we have 

Il l  - ( a  + c) = red (i , f)  <= red (i) = [el - (a + c), 

which implies lfl <14 As observed at the beginning of the argument ,  we have 
a < b. Thus 

red (i r e) > lel - ( a  + d) > Ifl  - ( a  + d) > Ifl  - ( b  + d) = red (j). 

This completes  the proof  of the Pushing Lemma.  [ ]  

6. The contractibility of K 

In this section we prove that  the complex K (and hence the space X) is 
contractible.  Recall that  K can be described as the geometr ic  realization of the 
category of equivalence classes of marked  graphs  (g,G), with ~I(G)'~Fn, in 
which the arrows are sequences of collapses (cf. 1.1). 

6.1. Statement o[ the theorem 

By the Ger t rude  Stein L e m m a  (1.2.1), the complex  K is the union of the stars 
of its roses: 

K = U 
peK 

Let W be a nonempty  finite set of conjugacy classes in F,,, and  ' < '  a total  
ordering of the roses in K subordinate  to the norm I[ II = I[ IIw (cf. 1.2). Define 

K,,,i,,= U st(t,). 
IhoH 

minimal 

We prove  the theorem in the following form:  

Theorem 6.1.1. The complex Kmi n is a deformation retract of K. 
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We then show that for an appropr ia te  choice of W, Kmi n consists of the star 
of the single rose P0. Thus  we obtain 

Corollary 6.1,2. The complex K is contractible. 

As mentioned in the introduction this implies 

Corollary 6.1.3. The group Out(F,) is of type VFL and has virtual cohomological 
dimension 2n - 3. 

Observe that  6.1.1 and  6.1.2 together imply that Kmi n is contractible for any 
choice of a finite subset W of ~'. Moreover,  Kmi n is invariant under the action 
of the subgroup Ou tw(F  ) which consists of all outer  au tomorphisms  that 
permute the conjugacy classes in the set W. By showing that  the quotient  of 
Kmi . under  this action is finite we can conclude that Outw(F) is of type VFL. 
This result was also obtained by Gersten, and is an extension of McCool ' s  
theorem [8] that  these groups are finitely presented. We remark that the 
mapping class groups of  bounded  surfaces are of this form. 

Corollary 6.1.4. For any finite set W of conjugacy classes in F, the group 
Outw(F,) is of type VFL. 

Proof. Outw(F,) acts on the contractible complex Kmi . with finite stabilizers, so 
it suffices to shown Kmin/OUtw(F,) is finite. 

For  any rose p, there are only a finite number  of  subsets W'cC~ with the 
property that Ilpllw=llpllw,, since there are only a finite number  of graphs on 
2n vertices with the sum of the valences of the nodes equal to twice HPtlw. Fix 
a rose Po in Kmi n. Let W=Wo, W1,. . . ,W ~ be all subsets W' of ~ with ][Pollw 
= HPoHw, which are images of W under an outer  au tomorph i sm of F. Choose 
au tomorphisms  % = i d ,  cf l , . . . ,7  s such that c~i(W)=W i. Note  that for any 
7eOut(F,)  and any rose p, we have tbP' ~llw = ItPll~cw)- Thus 

l ip0" ~11 w = IIp011w, = IIp0LI w,  

i.e. po-e~ is rose in Km~ ~ for each i. 
If p is any rose in Kmin, choose an au tomorph i sm e with po.e=p. Then 

[[pollw=liPllw=llPol],(w~, so c~(W)=W/ for some i. Thus  W=7-1o(7i(W)), i.e. 
7 -  ~ o 7~ stabilizes W; since p. (7-  ~ o 7~) = Po" c~, we have shown that p is equiva- 
lent modulo  Outw(F,) to  one of  the finite number  of roses {Po' c~i}. Therefore 
Kmi,/Outw(F,) is finite. [ ]  

6.2. ProoJ of the theorem 

We prove that K deformation retracts t o  Kmi n by showing that for each rose p, 
the subcomplex 

K<=p= ~ st(p') 
p'<_p 

deformation retracts to Km~ .. 
Let p be a rose whose norm is not minimal. Then K<=p=st(p)wK<p. If p is 

the first rose in the ordering which is not minimal, then K <p--Kmi n. Therefore 
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we may assume by induction that K<0 retracts o n t o  Kmi n. Since st(p) is 
contractible, in order to show that K st, retracts to Kmi n it suffices to show that 
st(p) c~ K <t, is contractible. 

Note that the Existence Theorem (4.2.4) shows that st(p)c~K<o is non- 
empty. 

We have reduced our problem to working inside the star of a single rose p 
=(r,R). By Proposition 2.2.2, we may identify st(p) with the geometric re- 
alization of the poser of complete collections of ideal vertices, where the partial 
ordering is given by inclusion. We will make this identification throughout this 
section. 

The following lemma, which is standard (see [10]) is useful in dealing with 
complexes of this type. 

Poset Lemma 6.2.1. Let f :  P ~ P  be a poset map.from the poset P to itself, such 
that p< f (p)  for all p~P. Then f induces a deJbrmation retraction .from the 
geometric realization ~?J P to the geometric realization ~?f the image f(P).  

We begin by defining certain subcomplexes of st(p): 

Definition. The upper star st+(v) of a vertex v of K is the subcomplex of the 
star of v spanned by vertices of level greater than or equal to the level of v. 
(Recall that the level of a graph is the number of nodes). The upper link Ik+(v) 
is the subcomplex of the link of v spanned by vertices of level greater than the 
level of v. 

The upper star st+(L) of a subcomplex L of K is the union (not the 
intersection) of the upper stars of all vertices of K. 

Let I be a complete set of ideal edges of p, and v=pt=(g~ ,R  ~) the 
associated vertex of K. Then st+(t,) is the realization of the poset of all 
complete sets J of ideal edges which contain I. The following subcomplexes of 
st+(v) will be important:  

Define 

R( I )=  { J ~ I :  J is complete and contains a reductive ideal edge} 

S(I )=  {J ~ I :  J is complete and contains a strictly reductive 
ideal edge} 

TR(I )=  {J ~ I "  J is complete and consists entirely of reductive 
ideal edges} 

TS(I)= { J ~ I :  J is complete, consists entirely of reductive 
ideal edges, and contains a strictly reductive ideal 
edge} 

Define R(v), S(v), TR(v), and TS(t,) to be the geometric realizations of R(I), 
S(I), TR(I), and TS(I) respectively. 

Lemma 6.2.2. Let I be a complete set of zero-reductive ideal edges of R, and v 
= p*. Then TS(v) is contractible. 

Proof. Since every ideal edge in I is zero-reductive, the Existence Theorem says 
that there exists an ideal edge m which is compatible with each ideal edge in I 
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and has the minimax property. We will retract TS(v) to the vertex of TS(v) 
represented by I u  {m, hi} by using the Pushing Lemma (Sect. 5). 

For any subcomplex L of st(v), let C(L, m) denote the set of all ideal edges j 
such that j crosses m and .jeJ for some vertex ps of L. Define the complexity 
c(L) to be the number of elements of C(L, m). 

Claim. Let E be a subcomplex of TS(v) such that 
(i) c(L')=O 
(ii) st + (L')n TS(v)= E 

and (iii) Iu{m,  tfi}eE. 
Then E is contractible. 

Proof By condition (i), m is compatible with each ideal edge in each vertex J 
of E. This together with the fact that E is in the star of I implies that the map 
sending J to J wlu{m,n~} is a well-defined poset map on L'. Condition (ii) 
guarantees that the image of this map is contained in L', and thus by the Poset 
Lemma gives a deformation retraction from L' onto its image. Since every 
vertex in the image contains I u {m, nS}, which is also in the image by condition 
(iii), the map sending J to I u {m, nS} now gives a deformation retraction of the 
image to the vertex I u  {m, nS}. []  

If c(TS(v))=0, we are done by the claim. 
If c(TS(v))>0, we will retract TS(v) to a subcomplex E satisfying hypotheses 

(ii) and (iii) of the claim which has strictly lower complexity. We can repeat 
this operation, reducing the complexity at each stage. We end up with a 
subcomplex of complexity zero, which can be retracted to I u  {m,r~} by the 
claim. This will prove the lemma. 

Notation. Choose eem such that red (m, e)= red (m). Orient each ideal edge i so 
that eei. 

Let C'cC(TS(v),m) be the set of ideal edges ieC(TS(v),m) with 4+(toni) 
minimal. Choose aeC' such that a is outermost, i.e. # a >  44c' for all c'eC'. By 
the Pushing Lemma, one of the sets a uvfi or m u a  is an ideal edge with 
reductivity >red(a) ;  denote this ideal edge by a 0. Define a map from TS(v) to 
itself by sending J to Ju{~o , a0}  if aeJ, and J to itself if a•J. 

Claim. This map is a well-defined poser map. 

Proof We must show that a 0 is compatible with J for every J which contains 
a. Fix such a J, and let beJ. Since b is compatible with a but not with a 0, we 
have either b o a  or a ~ b .  If b o a ,  it does not cross a o. If b ~ a ,  and b crosses 
a o, then b must cross m and # ( m n r ) ) <  #(mc~8). But aeC ' ,  so #(mc~i))> 
# (mnS) .  Thus # ( m n b ) =  # (m nS ) ,  and beC'. But this contradicts the as- 
sumption that a is outermost, so b must be compatible with a 0. [] 

This poset map retracts TS(v) onto a subcomplex. We now retract this 
subcomplex by the poset map which sends J to itself if a is not in J, and J to 
J - { a , ~ }  if a~J. The image of this map is a subcomplex E of TS(v) with 
C(E, m) = C(TS(v), m) - {a, ~}, i.e. with strictly smaller complexity. 

One checks easily that this procedure can be repeated for the subcomplex 
L', and that after c(TS(v)) such reductions TS(v) has been retracted to a 
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subcomplex satisfying the hypotheses of the claim. This completes the proof 
that TS(v) is contractible. []  

Lemma 6.2.3. Let I be a complete set of zero-reductive ideal edges of p, and v 
=t") I. Then S(v) is contractible. 

Pro(o( The map S(I)~TS(I) which sends any element J of S(I) to the subset of 
J consisting of reductive ideal edges is a poser map, and hence induces a 
deformation retraction S(v)-,TS(v) by the Poser Lemma. []  

We are now set up to prove the main lemma of the theorem. 

Main Lemma 6.2.4. Let I be a complete set of zero-reductive ideal edges of p, 
corresponding to the vertex v of st(p). Let L be a subcomplex ol R(v) such that 

(i) L contains S(v), 
and (ii) L =  U st+(w). 

w~Ln "I'R0~) 

Then L is contractible. 

Proof Define 
d(L) = min {dim (s t+ (w))}. 

wE(L-- S(v)}n TR(I') 

The proof proceeds by induction on d(L). 
To begin the induction, we will show that if d(L)=0,  then L=S(v), and 

hence L is contractible by the preceeding lemma. By hypothesis (i) we have 
S(~)~L, To show the opposite inclusion, let w be any vertex of L. By (ii), 
wcst+(w') for some totally reductive ve r t ex  w ' = p  J of L. If each ideal edge of J 
is zero-reductive, then the Existence Theorem says that we can find an ideal 
edge k which is compatible with each ideal edge in J and is strictly reductive. 
But then Jw{k,k} is a complete set of ideal edges representing a vertex of 
lk+(w'); thus dimst+(w')> l, contradicting the assumption that d(L)=0.  There- 
fore w' must be strictly reductive, which implies that w~S(v). 

Assume now that d(L)=k>O. Let L' be the union of S(v) and all of the 
upper stars of vertices w~TR(v) such that dimst+(w)<d(L). Then L' clearly 
satisfies the hypotheses of the Main Lemma, and d(E)<d(L). Thus E is 
contractible by induction. 

If w~L-L' ,  then dimst+(w)=d(L) and the star of w in L is equal to st+(w). 
Note that if w and w' are any two vertices of L - E ,  then st+(w)nst+(w')cE. 
Thus to see that L is contractible, we need only show that st+(w)c~E is 
contractible for each w E L - E .  

We now observe that if w e L - E  is reductive, then w must be zero- 
reductive since S(v)cL'. In addition, S(w)cst+(w)nEcR(w),  and st+(w)nL' 
equals the union of the upper stars of all vertices u of st+(w)nL' which are 
contained in TR(v) and hence in TR(w). Since d(st+(w)nL')<d(L), st+(w)nL' 
is contractible by induction. This completes the proof of the Main Lemma. [] 

To finish the proof of the theorem, we show that L=st(p)nK<~, satisfies 
the hypotheses of the Main Lemma (6.2.4), and is hence contractible. 

It is clear that L satisfies condition (i). 
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To verify OiL let v = pJ be any vertex in L. We must  find a vertex v ' =  pJ' of 
Lc~TR(v) with vest+(v'), i.e. J ' c J .  Since vest(p)nst(p ') ,  where IlPl] < IIP'll, the 
Fac t o r i z a t i on  L e m m a  implies  that  some ideal edge in J must  have  non- 
negative reduct ivi ty .  Thus we can take J '  to be the set of all reduct ive  edges 
in J. [ ]  

To prove  that  K is contract ib le ,  let {xi} be the s t andard  basis of F, 
co r respond ing  to the petals of  R o, and set 

Wo = {xi}F=, u {xi x~}i < j u  {xixj}i <;. 

Then the s tar  g raph  Swo(PO) is the comple te  g raph  on 2n nodes,  i.e. there is 
exact ly one unor ien ted  edge between every pair  of  nodes. 

Proposition 6.2.5. Let p be a rose. Then [IPl]wo <n(2n-1 ) ,  with equality if and 
only if p = Po. 

Proof Cons ide r  the  Whi t ehead  d i ag ram for an ideal  edge i in the s tar  graph 
Swo(Po ). If i conta ins  s edges, the s imple closed curve represent ing i intersects 
the star  g raph  in s (2n - s )  points .  Thus the reduct iv i ty  of the Whi t ehead  move 
(i, e) for any  edge e of  Po is 

red (i, e )=  le[ - s (2n  - s ) = ( 2 n -  1) - s (2n  - s ) = ( s  - 1)(s - ( 2 n  - 1)). 

Since i is an ideal edge, we have l < s < 2 n - l ,  so red(i ,  e ) < 0 .  
We have just  shown tha t  Po has no reduct ive  ideal edges. Since Po has no 

str ict ly reduct ive  edges,  Co ro l l a ry  4.2.3 implies tha t  1[Poll Wo = n ( 2 n -  1) must  be 
minimal .  Since Po has no zero- reduct ive  edges, P ropos i t ion  4.2.2 implies  that  
Po is the unique  rose  with min ima l  norm.  []  

This p ropos i t i on  says tha t  for W= W o, Kmi n consists of the s tar  of the single 
rose Po, and  is hence  contract ible .  Thus we have proved  Coro l l a ry  6.1.2, i.e. the 
complex  K is contract ible .  Q.E.D. 
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