
Annals of Mathematics

Dehn Surgery on Knots
Author(s): Marc Culler, C. McA. Gordon, J. Luecke and Peter B. Shalen
Source: Annals of Mathematics, Second Series, Vol. 125, No. 2 (Mar., 1987), pp. 237-300
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1971311 .

Accessed: 04/01/2015 21:37

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of
Mathematics.

http://www.jstor.org 

This content downloaded from 128.248.155.225 on Sun, 4 Jan 2015 21:37:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=annals
http://www.jstor.org/stable/1971311?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Annals of Mathematics, 125 (1987), 237-300 

Dehn surgery on knots 

By MARC CULLER', C. MCA. GORDON2, J. LUECKE3, 
AND PETER B. SHALEN4 

Introduction 

We consider the problem of which Dehn surgeries on a knot can produce 
3-manifolds with cyclic fundamental group. It is natural to work in the following 
setting. Let M be a compact, connected, irreducible, orientable 3-manifold such 
that AM is a torus. The unoriented isotopy class of a non-trivial simple closed 
curve in AM will be called its slope. For any slope r, a closed 3-manifold M(r) 
may be constructed by attaching a solid torus J to M so that a curve of slope r 
bounds a disk in J. 

If r and s are two slopes, we denote their (minimal) geometric intersection 
number by A(r, s). 

The main result of this paper is the following theorem. 

CYCLIC SURGERY THEOREM. Suppose that M is not a Seifert fibered space. If 
'rr(M(r)) and ir1(M(s,)) are cyclic, then A(r, s) < 1. Hence there are at most 
three slopes r such that v,(M(r)) is cyclic. 

This result is sharp; Fintushel-Stern have shown (private communication) 
that 1& and 19-surgeries on the (- 2,3,7) pretzel knot yield lens spaces. Many 
examples of the same phenomenon have been produced by Berge (private 
communication). 

For a detailed account of the manifolds obtained by attaching solid tori to a 
Seifert fibered space along some of its boundary components, see [Hei]. 

We give some corollaries which apply to Dehn surgery on knots K in S3. In 
the proofs, M will denote the complement of an open tubular neighborhood of 

'Partially supported by NSF grant NSF-DMS-84-02595. 
2Partially supported by NSF grant NSF-DMS-84-03670. 
3Partially supported by an NSF post-doctoral Fellowship. 
4Partially supported by NSF grant NSF-DMS-86-02433. 
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238 M. CULLER, C. M. GORDON, J. LUECKE, P. B. SHALEN 

K. We use Q U (1/0} as in [R] to parametrize the slopes on AM, and denote 
M(r) by K(r). In particular, K(1/O) = S3. 

COROLLARY 1. If K is not a torus knot and r E Q, then '7T(K(r)) can be 
cyclic only if r is an integer. Moreover, there are at most two such integers r, 
and if there are two then they must be successive. 

Proof. The manifold M is Seifert-fibered if and only if K is a torus knot. 
Also, A(a/b, 1/0) = Ibi, and if n1 and n2 are integers, then A(nl, n2) 
in, - n21. 0 

The next corollary is a step towards establishing the conjecture that any 
nontrivial knot has Property P, in other words, that K(r) is not simply-connected 
if r E Q. 

COROLLARY 2. If K is a non-trivial knot and r e Q is not equal to 1 or - 1 
then K(r) is not simply-connected. Moreover, K(1) and K(- 1) cannot both be 
simply-connected. 

Proof This follows from Corollary 1 and the fact that non-trivial torus knots 
have Property P [Ms]. LI 

COROLLARY 3. Up to unoriented equivalence, there are at most two knots 
whose complements are of a given topological type. 

Proof. Suppose that there are three inequivalent knots whose complements 
are homeomorphic. Then for any one of these knots, say K, there exist two 
distinct rational numbers r and s such that K(r) = K(s) = K(1/0) = S3. This 
contradicts Corollary 2. [] 

COROLLARY 4. If K is a non-trivial amphicheiral knot and r C Q - { 01, 
then 1Tl(K(r)) is not cyclic. In particular, K has Property P. 

Proof. If K is amphicheiral, then there is an automorphism of M 
which takes r to - r for all slopes r E Q U {1/0}. Since A(r, - r) 2 2 if 
r Q - { 0, and since torus knots are not amphicheiral, the result follows. LI 

COROLLARY 5. Knots of Arf invariant 1 are determined up to unoriented 
equivalence by their complements. 

Proof As in the proof of Corollary 3, it follows from Corollary 2 that if K is 
not determined by its complement then either K(1) or K(- 1) is homeomorphic 
to S3. But if a(K) E Z2 denotes the Arf invariant of K, then the Rohlin 
invariant of K(1/n) is na(K) (see [Gn]). El 
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DEHN SURGERY ON KNOTS 239 

Actually, a considerably stronger result follows from recent work of Casson's 
[C], [A-M]. He proves that any knot K whose Alexander polynomial A(t) 
satisfies A"(1) # 0 has Property P. In particular, since the mod 2 reduction of 
2A"(1) is a(K), this implies that knots of Arf invariant 1 have Property P. 

It is shown in [Wh] that Corollary 1 implies the following result. 

COROLLARY 6. Prime knots with isomorphic groups have homeomorphic 
complements. E 

Finally, combining our work with the fact, recently proved by Bleiler and 
Scharlemann [B-S], that strongly invertible knots have Property P, we can state 
the following result. 

COROLLARY 7. If K is a non-trivial knot which is invariant under a 
non-trivial periodic automorphism of S3, then K has Property P. 

This will be proved in Section 2.8. 

Before giving some indications of the method of proof of the Cyclic Surgery 
Theorem, we shall fix some conventions and terminology that will be used 
throughout the paper. We will work in the smooth category. All manifolds are 
understood to be orientable. If S is a surface in a 3-manifold, we define a 
compressing disk for S to be a disk D c M such that D n S = dD and such 
that dD is (homotopically) non-trivial in S. If S is properly embedded one can 
surger S using D to obtain a new properly embedded surface in M; this 
operation will be called a compression. A surface S in a 3-manifold M will be 
called incompressible if (i) no component of S is a sphere and (ii) there is no 
compressing disk for S in M. The incompressible surfaces that we discuss will all 
be either properly embedded (always the case in Chapter 1) or contained in the 
boundary of the ambient 3-manifold (sometimes the case in Chapter 2). In these 
cases, (ii) is equivalent to the condition that the fundamental group of each 
component of S maps injectively to that of M. 

By an essential surface in a 3-manifold M, we shall mean a properly 
embedded surface which is incompressible and no component of which is 
parallel to a subsurface of dM. Now suppose that M is irreducible and that dM 
is a torus, and let S be any essential surface in M with dS non-empty. The 
boundary components of S are disjoint non-trivial simple closed curves in dM 
and hence all have the same slope, say r. We call r the boundary slope of S. 
A slope r on dM will be called a boundary slope if it is the boundary slope of 
some essential surface in M. We will call r a strict boundary slope if it is the 
boundary slope of some essential surface which is not a fiber in any fibration of 
M over the circle. 
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240 M. CULLER, C. M. GORDON, J. LUECKE, P. B. SHALEN 

The Cyclic Surgery Theorem is proved in Chapter 1 for the case when M 
contains no essential torus and neither of the given slopes r, s is a strict 
boundary slope. Here the argument is based on the Thurston Geometrization 
Theorem, which asserts in this situation that the interior of M has a hyperbolic 
metric of finite volume. As in [C-SI], this is used to define a family of (characters 
of) representations of TrT(M) in SL2(C), parametrized by the points of a complex 
affine algebraic curve X0. The ideal points of a de-singularized projective 
completion X0 of X0 correspond to actions of '7T(M) on trees, which can be 
used to define essential surfaces in M. One shows that for all but a very small 
set * of slopes r, one of the following alternatives holds. Either there is a point of 
X0 corresponding to a representation of '7T(M) in SL2(C) which induces a 
representation of the quotient group 7T,(M(r)) onto a non-cyclic subgroup of 
PSL2(C); or there is some ideal point of X0 which defines an essential surface S 
which is closed or has boundary slope r, and is not a fiber. Furthermore, if S is 
closed then it has positive genus and remains incompressible in M(r). Thus in 
each of these cases, either 7T,(M(r)) is non-cyclic or r is a strict boundary slope. 

For a more precise outline of the proof in this case, see Sections 1.0 and 1.1. 

Chapter 2 is devoted to the proof of the Cyclic Surgery Theorem in the case 
where either M contains an essential torus or one of the given slopes is a strict 
boundary slope. One shows that it is enough to prove the theorem for manifolds 
which are not cabled (in the sense of [Gr-L]). If M is not cabled and contains an 
essential torus T. it is shown that T remains incompressible in M(r) for all but a 
very small set of slopes r. This is done by considering two slopes r and s such 
that T compresses in M(r) and M(s), and carrying out a graph-theoretic analysis 
of the intersection of the two planar surfaces in M corresponding to the 
compressing disks for T in M(r) and M(s). An analogous argument allows one 
to deal also with the case where the first Betti number of M is greater than 1. 
There, by finding restrictions on the slopes r such that M(r) is reducible, it is 
shown that gl(M(r)) is non-cyclic for all but a very small set of slopes r. For the 
case of boundary slopes, observe that if r is the boundary slope of an essential 
surface F in M, then F can be capped off to produce a closed surface F in 
M( r). Assuming (as we now may) that the first Betti number of M is 1 and that r 
is a strict boundary slope, it is shown that if F is suitably chosen then either F is 
incompressible in M( r), or F is a 2-sphere which decomposes M( r) as a 
connected sum of two non-trivial lens spaces, or M contains a closed essential 
surface S with special properties. Finally, by a graph-theoretic analysis of the 

*For the purpose of this informal discussion, a set of slopes is "very small" if A(r, s) < 1 for 
all r and s in the set. 
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DEHN SURGERY ON KNOTS 241 

kind mentioned above, one shows that S remains incompressible in M(s) 
whenever A?r, s) > 1. 

A more detailed summary of the contents of Chapter 2 is given in Section 
2.0. 

The proof of the Cyclic Surgery Theorem gives a rather stronger result. Let 
us define a closed 3-manifold L to be small if 
( * ) there exists no incompressible surface in L; and 
(**) there exists no representation of sr(L) into PSL2(C) with non-cyclic 
image. 
Then in both the statement and proof of the Cyclic Surgery Theorem, the 
hypothesis that M(r) and M(s) have cyclic fundamental groups may be replaced 
by the condition that they are small. (A connected sum of two non-trivial lens 
spaces violates ( * * ) because a free product of two cyclic groups is Fuchsian and 
hence embeds in PSL2(R).) 

We thank F. Bonahon for some helpful insights regarding this work. We also 
thank E. Luft and R. A. Litherland, for pointing out an error in one of the 
arguments in the first version of this paper, and G. Mess and R. Skora for 
supplying a number of corrections to that manuscript. 

Chapter 1 

In this chapter we will prove the following case of the Cyclic Surgery 
Theorem. 

THEOREM 1.0.1. Let M be a compact irreducible (orientable) 3-manifold 
with torus boundary. Suppose that M is not a Seifert fibered space and contains 
no essential torus. Let r and s be slopes such that 7T1(M(r)) and 7T1(M(s)) are 
cyclic groups. If neither r nor s is a strict boundary slope then A(r, s) < 1. 

In Section 1.1 we will reduce the proof of this theorem to that of two other 
results, Propositions 1.1.2 and 1.1.3. Proposition 1.1.2 will be proved in Section 
1.4, and Proposition 1.1.3 will be proved in Sections 1.5 and 1.6. In Sections 1.2 
and 1.3 we reformulate and extend some of the ideas in [C-Si] to make them 
more directly applicable to the proofs of these propositions. 

Throughout this chapter it is understood that M satisfies the hypotheses of 
Theorem 1.0.1. Thus it follows from the Thurston Geometrization Theorem 
[MB, Chapter V] that the interior of M admits a hyperbolic metric of finite 
volume. 

1.0.2. We need to establish some conventions regarding the use of funda- 
mental groups in order to avoid problems with base points. If we are given a 
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connected polyhedron X and if we have fixed a universal cover X of X, then we 
will denote by 7T1(X) the group of covering transformations of X. If x is a point 
of X then a lift i E X of x determines an identification of g1(X) with 7T1(X, x). 
An oriented closed curve in X determines, up to conjugacy, an element of 
7T1(X). A map from a connected polyhedron Y to X determines, up to composi- 
tion with inner automorphisms, a homomorphism from 7T,(Y) to g,(X). Thus 
many of the statements which are proved in this chapter apply to objects which 
are only defined up to conjugacy. Our convention is that this ambiguity will be 
ignored provided that the statements in question are invariant under conjugacy. 

We fix, for the entire chapter, a universal cover M of M. 
It will be convenient to adopt the following notation. We will denote by L 

the group H1( 3M; Z), which will be regarded as a lattice in the 2-dimensional 
real vector space V = H1(3M; R). There is a homomorphism 7,( AM) -> g,(M) 
which is defined up to composition with inner automorphisms of 71(M). We 
will identify 7T,(3M) with its image under this homomorphism. We will let 
e: L -- l(3M) denote the inverse of the Hurewicz isomorphism. We will often 
view e as a homomorphism from L to 7T,(M) which is defined modulo inner 
automorphisms. Recall that a slope is an isotopy class of unoriented simple closed 
curves on A M. Thus each slope r corresponds to a pair { ? a) of primitive 
elements of L; we shall write M(a) = M(r). Note that 7T,(M(a)) has presenta- 
tion 17T,(M): e(a) = I1. If r is a (strict) boundary slope then we will call a and 
- a (strict) boundary classes. If a and /3 are elements of L then we will write 
a(a, /3) for the absolute value of their intersection number. 

1.1. The curve of characters 

We will briefly review some notation and basic theorems from [C-SI] and 
[C-S2]. We denote by R = R(7T,(M)) the space of all representations of 'g,(M) in 
SL2(C). This space has the structure of a complex affine algebraic set. The set 
X = X(7T,(M)) is the set of characters of representations in R, and t: R -> X is 
the natural map which sends a representation p to its character XP. This set also 
has the structure of a complex affine algebraic set [C-SI, Corollary 1.4.5]. The 
map t is a regular map, and for each -y E 7T,(M) there is a regular function 
IY X -> C defined by I,(x) = X(Y). The set of functions I. for y E 7TAM) 
generates the coordinate ring of X. Note that since I. depends only upon the 
conjugacy class of y E 7T1(M), Ie(a) is a well-defined function on X for each 
a E L. Since M is hyperbolic there is a representation p0 E R which is discrete 
and faithful [C-SI, Proposition 3.1.1]. We denote by Ro an irreducible compo- 
nent of R containing p0, and set X0 = t(RO). 
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DEHN SURGERY ON KNOTS 243 

The following proposition is essentially due to Thurston. 

PROPOSITION 1.1.1. The set X0 c X is an irreducible affine variety of 
dimension 1. For each non-trivial element a of L, the function Ie(a) is non- 
constant on X0. 

Proof: Proposition 1.4.4 of [C-Si] shows that X0 is a variety. By Proposition 
3.2.1 of [C-SI], dim X0 ? 1. The equality dim X0 = 1 then follows from Proposi- 
tion 2 of [C-S2], which also shows that Ie(a) is non-constant on X0 for each 
non-trivial element a of L. ] 

The idea of the proof of Theorem 1.0.1 is to show, for most a E L, that 
7T1(M(a)) is non-cyclic by producing a representation in PSL2(C) with non-cyclic 
image. A representation p E R0 will induce such a representation if and only if 
p(e(a)) = + 1. An obvious necessary condition for p(e(a)) = +?1 is that the 
value of the function Ie(a) should be +2 at the point t(p) E X0. This suggests 
studying the zeroes of the functions fa: X0 -> C defined for all a E L by 

f = I2 _) - 4. 

It is always easier to study the zeroes of a function defined on a smooth 
projective curve. Thus, as in [C-S1], we will denote by 1O the smooth projective 
curve which is birationally equivalent to X0. The birational equivalence from XO 
to XO is regular (i.e. defined) at all but a finite number of points of X0. The 
points where it is defined will be called ordinary points, and the others will be 
called ideal points. We will identify the function fields of X0 and 1O under the 
isomorphism induced by the birational equivalence. Thus any rational function f 
on X0 pulls back to a rational function on X0 which will also be denoted f. 

Recall that a rational function defined on a smooth curve is meromorphic 
and that its degree is equal to the number of poles, counted with multiplicities. 
For a non-zero rational function the degree is also equal to the number of 
zeroes. The following proposition describes the behavior of the degree of 
fa: XO -C U { oo } as a varies over the group L. 

PROPOSITION 1.1.2. There exists a norm on the real vector space 
V = H1( 3M; R) with the following properties. 

(i) For each a E L, hail = degree fa. 
(ii) The unit ball is a finite-sided polygon whose vertices are rational 

multiples of strict boundary classes in L. 

This will be proved in Section 1.4 by examination of the poles of the 
functions fa for a E L. 
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The next proposition concerns the orders of zeroes of the functions fa for 
a E L. If x is a point of XO and f is a rational function on X0 with f(x) = 0, 
then we will denote by Zx(f) the order of zero of f at x. If f(x) : 0, and in 
particular if f has a pole at x, we set ZX(f) = 0. 

PROPOSITION 1.1.3. Suppose that a is a primitive element of L which is not 
a strict boundary class, and that 7T,(M(a)) is cyclic. Then, for each point 
x E XO, and for each non-zero 8 E L, we have 

ZX(fa) < ZX(f). 

This will be proved in Sections 1.5 and 1.6. It will be shown in Section 1.5 
that if x is an ordinary point and a and 8 are non-zero elements of L such that 
Zx(fa) > Zx(fe), then the image of x in X0 is the character of a representation 
p E Ro which induces a homomorphism of -7T(M(a)) onto a non-cyclic subgroup 
of PSL2(C). In the case where x is an ideal point and a and 8 are non-zero 
elements of L such that Zx(fa) > Zx(f6), it will be shown in Section 1.6 that 
either a is a strict boundary class or there exists a closed surface in M which is 
incompressible in M(a). 

The rest of this section will be devoted to the proof that Propositions 1.1.2 
and 1.1.3 imply Theorem 1.0.1. 

Note that the following is a corollary to Propositions 1.1.2 and 1.1.3. 

COROLLARY 1.1.4. Suppose that a is a primitive element of L which is not a 
strict boundary class, and that 7T,(M(a)) is cyclic. Then for each non-zero 8 E L 
11al ' 11811? a 

Define m = minO ELH68I, and consider the ball B of radius m in V. By 
Proposition 1.1.2 this is a compact, convex, finite-sided polygon which is bal- 
anced (i.e. - B = B). By construction there are no non-zero elements of L 
contained in the interior of B. 

We will use the obvious area element defined on V in which any pair of 
generators of L spans a parallelogram of area 1. The above properties of B imply 
that the projection of V to the torus V/2L is one-to-one on the interior of B. 
Thus the area of B is at most 4. (This observation is due to Minkowski.) 

Corollary 1.1.4 implies that if a E L is a not a strict boundary class and 
71(M(a)) is cyclic then a must lie on the boundary of B. Now let a and /3 be 
two elements of L, neither of which is a strict boundary class. Suppose that 
71(M(a)) and 7T1(M(f/)) are cyclic. Let P denote the parallelogram in V with 
vertices + a, ? /3. We have 

lX(a, P) = 'Area P < 2 Area B < 2. 
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Furthermore, if LX(a, /3) = 2 then we must have B = P. Hence in this case, a 
and /3 are vertices of B. But by Proposition 1.1.2(ii), this implies that they are 
strict boundary classes, a contradiction. Thus we conclude that LX(a, /3) < 1. 

This completes the proof that Propositions 1.1.2 and 1.1.3 imply Theorem 
1.0.1. El 

1.2. Ideal points and trees 

In this section we redo the material from Sections 2 and 3 of [C-Si] in a 
form, suggested by the approach of [M-S1], which is better adapted for the 
applications in this paper. We begin by reviewing some of the ideas in [Se]. 

Let F be a field and v: F * -> Z a (discrete) valuation. We denote by (9 the 
valuation ring { f E Fjf = 0 or v(f) ? 0), and by . the maximal ideal in (9. 
The group SL2(F) acts on a tree TF which is constructed as follows. Define a 
lattice to be a finitely generated (submodule of the vector space F2 which 
spans over F. Define an equivalence relation on lattices by A A A' if A = aA' 
for some a CE F *. Given lattices A and A' there exists an element a E F * such 
that aA' C A and A/aA' is a cyclic (9module. The annihilator of this cyclic 
module is determined by the equivalence classes [A] and [A'], and is equal to 
J( for some integer d = d([A], [A']). 

Let T denote the set of equivalence classes of lattices. The function 
d: T X T -- T is an integer-valued metric. Consider the 1-complex constructed 
by taking T as the vertex set and adding an edge joining each pair of vertices 
which are distance 1 apart. It is shown in [Se] that this is a tree; i.e. it is 
connected and simply-connected. For two vertices s and s', the number of 
edges in the shortest path joining them is given by d(s, s'). We shall denote this 
1-complex by T as well. 

1.2.1. The obvious action of GL2(F) on the set of lattices in F2 determines 
an action on T, and this action is transitive on vertices. The lattice (92 generated 
by the standard basis of F2 is stabilized by the subgroup GL2((9) of GL2(F). 
This subgroup is, in fact, the entire stabilizer of the vertex [(92]. Restricting the 
action of GL2(F) yields an action of SL2(F) on T, with no inversions, such that 
the stabilizer of a vertex is a conjugate in GL2(F) of the subgroup SL2((9). 

Next we consider the action of SL2((9) on the link ?? of the standard vertex 
[(92]. (Of course, this action is conjugate to the action of the stabilizer of any 
vertex on the link of the vertex.) 

1.2.2. The vertices of ?? are represented by lattices A C (92 such that the 
quotient C92/A is isomorphic as an (9module to the residue field k = (91,#k. The 
image of such a lattice in the 2-dimensional k-vector space 92/,2 = k2 is a 
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1-dimensional subspace. This establishes a bijection between Y and the projec- 
tive line P'(k); we will use this to identify Y with P'(k). Then the action of 
SL2(C) on Y is the pull-back, under the obvious homomorphism SL2(C) 
PSL2(k), of the natural action of PSL2(k) on P'(k). In particular, an element of 
SL2(C) acts trivially on Y? if and only if it is congruent to + 1 modulo S#. 

In some of the arguments below we will use the following version of the 
extension theorem for valuations. 

THEOREM 1.2.3. Let F be a finitely generated extension of a field K. Let 
w: K *-- Z be a valuation. Then there exists a valuation v: F * Z such that 
v I K * = d w for some positive integer d. 

This is slightly more general than the usual form [Jb] of the extension 
theorem since F is allowed to be a transcendental extension of K. For a proof 
see, for example, [M-S1, Lemma II.4.4] 

If v and w are as in the above theorem we will say that v is an extension 
of w. 

We will now consider a 3-manifold M as in the introduction to the chapter, 
and the associated varieties R0, XO and XO defined in Section 1.1. Let K be the 
function field of X0, which we have identified with that of X1, and let F be the 
function field of R1O. Since there is a regular map of RO onto X0, we may regard 
F as an extension field of K. 

1.2.4. Recall, from Section 1 of [C-SI], that there is a tautological represen- 
tation P: 7r1(M) -> SL2(F) defined by 

P()=[a b] 
(7 [c d] 

where the functions a, b, c, and d are defined by 

(Y)= [a(p) b(p) 1 
[c(p) d(p)J 

for all p E ROI Note that for any element -y of 7T1(M), the trace of P(-y) is equal 
to IY E K c F. Note that since pO is faithful, P is also faithful. 

1.2.5. An ideal point x of XO determines a valuation w: K * - Z, which 
can therefore be extended to a valuation v: F * -> Z. This valuation determines 
an action of SL2(F) on a tree T which pulls back, under the homomorphism P, 
to an action of g,(M) on T. An action constructed in this way will be said to be 
associated to the ideal point x. 

(The construction of this action depends on the choice of the extended 
valuation v. However, the action defines a translation length function which is 
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shown in [M-S1] to be determined by the ideal point x. In most cases the 
translation length function essentially determines the action; see [C-M]. We will 
not use these facts here.) 

The following proposition is proved, in a slightly different setting, in [C-Si]; 
we indicate a proof from the point of view of the present paper. 

PROPOSITION 1.2.6. Let g71(M) X T -> T be an action associated to an ideal 
point x. An element y of 71(M) has a fixed point in T if and only if IYx) 0 xc. 
No point of T is fixed by the entire group vn1(M). 

Proof Let w and v be as in 1.2.5, and set (9 = (v. By 1.2.1, y has a fixed 
point in T if and only if P(y) belongs to a conjugate of PSL2((9) in PSL2(F). 
Using the rational canonical form (cf. [C-S1, Theorem 2.2.1]) one sees that this is 
equivalent to the condition Iy = trace P(y) E (9, which is in turn equivalent to 
I'y c Qw, i.e. IY(x) # ox. Since x is an ideal point, and since the functions Iy for 
y E 71(M) generate the coordinate ring of X0, (9 cannot contain all of the Iy. 
Thus no vertex of T is fixed by the entire group v71(M). O 

The final conclusion in the statement of Proposition 1.2.6 can be 
strengthened as follows. 

PROPOSITION 1.2.7. Let vlT(M) x T -> T be an action associated to an ideal 
point. Then no non-trivial normal subgroup of vT1(M) fixes a point of T. 

The proof of Proposition 1.2.7 depends on the following lemma. 

LEMMA 1.2.8. Let F be a field with valuation v and let F be a subgroup of 
SL2(F). Suppose that F contains a normal subgroup N, which is not contained 
in the center of SL2(F), but which is contained in a conjugate of SL2((9). Then 
either the trace of every element of F lies in (Q, or else F contains an abelian 
subgroup of index at most 2. 

Proof Assume that there exists -yo E F whose trace does not belong to T9. 
In particular, tr(yo) # + 2. Thus, after possibly replacing F by a degree 2 
extension and extending the valuation, we may assume that yo is diagonalizable 
over F. 

Consider the action of F on the tree T = TF. The fixed set TN of the 
subgroup N is non-empty since N is contained in a conjugate of SL2((9). By [Se, 
p. 58], TN is a subtree of T. Since N is normal, TN is invariant under F. 

Now let y be any conjugate of yo. Since y does not fix any vertex of T it 
follows from [Se, p. 63, Prop. 24] that y has a unique axis A-Y. i.e. a subcomplex 
of T which is homeomorphic to R and invariant under y. Moreover, any subtree 
of T which is invariant under y must contain A ye In particular, AY C TN. 
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Since y is diagonalizable in SL2(F) the axis AY can be described explicitly 
as follows. Consider a basis { e, f } of eigenvectors of y. For each integer n let sn 

be the vertex of T corresponding to the lattice with basis { T 'xe, f }, where 7r is a 
generator of the maximal ideal in (9. One checks directly that s is joined to s + 1 
by an edge en and that the union of the en and the sn is a line in T which is 
invariant under the action of y. Thus this line is the axis AY 

We claim that each element P of N is diagonal in the basis { e, f}. 
In proving this we may assume that { e, f} is the standard basis of F2. 
We have seen that v fixes all of the vertices of A _y Let II denote the matrix 

[7 ?1] GL2(F), which takes s0 to sn. Thus if P equals [a d], then for 

each n E Z, we have that fl-jvlfl= [a d fixes s0 and therefore 
belongs to SL2((9) by 1.2.1. Therefore b = c = 0 so that P is diagonal, proving 
the claim. 

Since N is not contained in the center of SL2((9) there is at most one basis 
of F2 in which N is diagonal. Therefore all of the conjugates of y0 are 
simultaneously diagonalizable. Therefore there exist exactly two lines in F2 
which are invariant under every conjugate of y0. Every element of F either 
keeps these lines invariant or interchanges them. It follows that F has an abelian 
subgroup of index at most 2. a 

Proof of Proposition 1.2.7. Let F = P(7T1(M)) C SL2(F), where P is the 
tautological representation and F is the function field of RO. Let v and w be as 
in 1.2.4. Suppose that there is a non-trivial normal subgroup of 7T1(M) which fixes 
a vertex of T; let N denote its image under P. Since P is faithful and 'r1(M) is 
torsion-free, N cannot be contained in the center of SL2(F). By 1.2.1, N is 
contained in a conjugate of SL2(O9). 

By Lemma 1.2.7, either every element of P(7T,(M)) has trace in (9v or F has 
an abelian subgroup of index at most 2. The first possibility implies that 

I,(x) $ x for all y in F. This is absurd since x is an ideal point. The second 
possibility implies, since P is faithful, that 7T,(M) has an abelian subgroup of 
index at most 2, contradicting the fact that the interior of M is a hyperbolic 
manifold of finite volume. a 

1.3. Trees and incompressible surfaces 

The results of this section are very similar to those of [C-SI, Section 2]. 
However, for the applications in Section 1.6 of this chapter it is necessary to 
state and prove them from a rather different point of view, suggested by [M-S1] 
and [M-S2]. 
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We continue to work with a manifold M as in the introduction to this 
chapter. Let M denote the universal cover of M, and let p: M -* M be the 
covering projection. Throughout this section we will suppose that we are given 
an action without inversions of 71(M) on a (simplicial) tree T. Let E denote the 
set of midpoints of edges in T. 

Definition 1.3.1. A properly embedded surface s in M is associated to the 
action if there exists a 71(M)-equivariant map 4: M -* T which is transverse to 
E, and such that +-1(E) = p'-(S). 

PROPOSITION 1.3.2. If S is a surface associated to the action then, for each 
component D of M - S, the image of 71(D) in 71(M) is contained in the 
stabilizer of a vertex. Thus if there is no fixed point for the action then any 
associated surface is non-empty. 

(Note that the above statement is consistent with the conventions of 1.0.2, 
since the set of vertex stabilizers in 71(M) is invariant under conjugation. The 
same comment applies to Proposition 1.3.4 below.) 

Proof The image of 71(D) in 71(M) is the stabilizer of a component of 
p-'(D). The equivariance implies that it fixes a vertex of T. In particular if 
S = 0 then 71(M) fixes a vertex of T. 2 

In studying surfaces associated to the action of 71(M) on T it is convenient 
to work with an alternate characterization. This will use an explicit form of the 
construction in Section 2 of [C-Si]. 

1.3.3. As in [Sco-W] we consider the aspherical complex X which is the 
quotient of M X T under the diagonal action of 71(M). This action realizes 
M x T as the universal cover of Y. Thus there is a natural isomorphism 
between 7T,(M) and 7( ). The action of 7T,(M) on T pushes forward to an 
action of 7(1(X) on T. If x is an edge or vertex of T then the stabilizer of x in 
71(X) will be denoted 7, If e is an edge of T with midpoint m, we let Se 
denote the quotient of M X m under 7e. If s is a vertex of T, Es will denote the 
closed star of s in the barycentric subdivision of T. The quotient of M X ES 
under 7s will be called Xs. Notice that the Ye are the components of the 
bicollared subcomplex & = M X E/71(Y) of Jr. The complexes Xs are the 
closures of the components of Y- &. 

In terms of the complex Y we can characterize the surfaces associated to 
actions as follows. 
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PROPOSITION 1.3.4. A surface S in M is associated to the action of 71(M) 
on T if and only if there exists a map 4: M --->XK, such that 

(i) 4 induces the natural isomorphism between -71(M) and '71(6V) up to 
conjugacy; 

(ii) 4 is transverse to &; and 
(iii) S = - 1(g). 

Proof Given 4 as in 1.3.1, we may take 4 to be induced by the equivariant 
map k X id from M X T to T. Given 0 as in the statement of the lemma, 4 
may be constructed by lifting 4 to a map M -> M x T and composing with the 
projection to T. 2 

1.3.5. We record here some remarks about the complex X that will be 
needed in Section 1.6. Suppose that r is a point of S, and that F is a lift of r to 
the universal cover M x T of X. Then F E M X e for a unique edge e. The lift 
F determines an identification of 7q1(A, r) with 771(J), which is the group of 
covering transformations of M x T. Under this identification we have 77(Y, r) 
= 7Te and 77,(Ys r) = as, where s is either vertex adjacent to e. 

Let S be a surface in M. By a trivial region for S we mean either a closed 
3-ball bounded by a component of S or a closed region of parallelism between a 
component of S and a submanifold of AM. 

PROPOSITION 1.3.6. Let S be a surface associated to the action of 71(M) on 
T. Suppose that S' is a surface obtained from S either by compressing S along a 
disk or by deleting the intersection of S with a trivial region for S. Then S' is also 
associated to the action. 

Proof. Let S be defined by a map f: M -> as in Proposition 1.3.4. 
Suppose that S' is obtained by compressing S along a disk. Then by performing 
surgery on the map 4 (cf. [Hem, proof of Lemma 6.5]), one obtains a homotopic 
map 4' which is transverse to & and such that (S)-1(&) = 5'. The conclusion 
then follows from Proposition 1.3.4. 

Next suppose that S' is obtained by deleting the intersection of S with a 
trivial region R for S. There is a map 4': M X-> F which agrees with 4 outside a 
small neighborhood V of R and maps V into k- &. Clearly S' is the pre-image 
of & under 4', and 4' is homotopic to ?. The conclusion again follows from 
1.3.4. El 

COROLLARY 1.3.7. Suppose that no point of T is fixed by 7T1(M). Let S be a 
surface associated to the action of 771(M) on T. Then there is a sequence 
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S = So, S1 ..., Sn of surfaces in M, each associated to the action, such that 
(i) Si + 1 is obtained from Si by a compression or by deleting the intersection 

of Si with a trivial region for Si; and 
(ii) Sn is essential. 

Proof A well-known finiteness result (cf. [Hem, loc. cit.]) asserts that, given 
any properly embedded surface S in a compact, irreducible 3-manifold, there 
exists a finite sequence of operations of the type described in (i) that replaces S 
by a (possibly empty) surface whose components are all incompressible and 
non-peripheral. If S is associated to the action of 71(M) on T. Proposition 1.3.6 
asserts that all the surfaces in the sequence are associated to the action. If the 
action has no fixed point then by 1.3.2 the final surface is non-empty; thus by 
definition it is essential. [] 

PROPOSITION 1.3.8. Assume that no point of T is fixed by 71(M). Then there 
exists an essential surface in M associated to the action. Furthermore, if C is a 
connected subcomplex of d M such that the image of 71(C) in 71(M) is 
contained in a vertex stabilizer, then the surface may be taken to be disjoint 
from C. 

Proof Let 'Xf be defined as in 1.3.3, and let 4: M - X' be a map inducing 
the natural isomorphism of fundamental groups (up to conjugacy). If C is a 
connected subcomplex of AM such that the image of 71(C) in 71(M) stabilizes a 
vertex s of the tree, then it follows from 1.3.5 that 4 may be taken to map C 
into Y, After a general-position homotopy we may assume that 4 is transverse 
to &. Then by Proposition 1.3.4, S = +-1(g') is a surface associated to the 
action. Clearly S n C = 0. The conclusion now follows from Corollary 1.2.6 
since the property of being disjoint from C is obviously preserved under 
compression and under deletion of components. 

PROPOSITION 1.3.9. Let x be an ideal point of the curve X0 of Sec- 
tion 1.1. Let a be a primitive element in L such that Ie(a)(x) $ xo. Then either 
Ie(/i)(x) $ xo for all /(3 E L or else a is a strict boundary class. 

Proof Consider the action of 71(M) on the tree associated to the ideal 
point x. By 1.2.6 e(a) stabilizes a vertex. Thus, by the proposition, there exists 
an essential surface S associated to the action which is disjoint from a simple 
closed curve in AM representing a. It follows from Proposition 1.2.7 that S is 
not a fiber in any fibration of M over S1. If AS is non-empty then a is a strict 
boundary class. Otherwise, by 1.3.2, 71(dM) stabilizes a vertex of T. Thus by 
1.2.6 we have Ie(O3) * Xo for all /3 in L. O 
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1.4. The norm 

In this section we prove Proposition 1.1.2, which asserts that the degree of 
fa for a E& L is given by a norm on the vector space V = H1( dM; R), and that 
the unit ball in this norm is a finite-sided polygon whose vertices are rational 
multiples of strict boundary classes. The proof is based on a study of the poles of 
the functions fin 

Let K denote the function field C(X0) = C(X0) of X0. If f is an element 
of K and x is a point of X0 where f has a pole, then we denote the order of the 
pole by Hx(f). If f does not have a pole at x we set L1x(f) equal to 0. Note 
that 

degree f= L L1(f) 
xeXo 

Note also that if a E L then the poles of ft all occur at ideal points of X0. 

LEMMA 1.4.1. For each ideal point x of 1o there is a homomorphism 
Ox: L -* Z such that 

14 x(fa) = lx(a)l 
for all a E- L. 

Proof As in 1.2.4, we consider the tautological representation F: ( o M) 
SL2(F), where F = C(RO). We regard F as an extension field of K. Note that 
P(w1(dM)) is an abelian subgroup of SL2(F), and that for 1 # y E wj(dM), 
trace P(-y) = IY 0 2 since I. is non-constant by 1.1.1. Hence there is a degree-two 
extension E of the field F such that P is equivalent (via an inner automorphism 
of GL2(E)) to a representation P': rl(M) SL2(E) which restricts to a 
diagonal representation of rl( dM). Let w: K * - Z be the valuation defined by 
the ideal point x of X0. By 1.2.2, there is a valuation v: E* Z such that 
v IK * = d w for some positive integer d. 

Let us fix a basis al, a2 for the lattice L. For i = 1 or 2, set 

P(e(ai))= [x -] 
where the Xi are elements of E*. For any element a = ma 1 + n a2 of L, we 
have 

Ie(a), = trace P(e (a)) = 7l Xn2 + XAmX- 

Hence 

fa = Ie2a) -4 = (XAX X - X XAn 2) 
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But for any element g of E, g not equal to 0, 1 or - 1, we have 

- min(o, v(g - g-')) =|v(g)|. 

Thus 

txt)= flx((XXr2 - m X-mn)2) 
min(O, w((X7X4 - 2 pm;pn)2)) 

-2 
= d min(O, v( ; ml ;n2X - VmXn)) 

2 

= d|v( ;2) 

2 = dj|mv(Xl) + nv(X2)L1 

The lemma follows upon setting Ox(a) = (2/d)(mv(Xl) + nv(X2)). 0 

Now for each ideal point x of XO we extend the homomorphism ox given 
by 1.4.1 to a linear function 'DX: V -* R. For ac E V we set Ihail = EI(Dx(a)l 
where the sum is taken over all ideal points x of X0. We shall show that 1 11 is a 
norm on V and has the properties asserted in Proposition 1.1.2. 

LEMMA 1.4.2. For each a E L, Ihail = degree f. 

Proof: We have 

degreeI = E fla(f~) = x(a) = IlalI. 
x E= X0o x ideal 

LEMMA 1.4.3. is a norm. 

Proof Since I I1 is a sum of absolute values of linear functions, it is 
sub-additive and homogeneous. Thus we need only show that hail 0 for a # 0. 
Since the functions (DX restrict to homomorphisms ox: L -* Z, it suffices to show 
that if a is a non-zero element of L then hail 0O. Suppose that a is a non-zero 
element of L with tall = 0. Then by Lemma 1.4.2, fib would have degree zero, 
i.e. would be constant. Thus Ie(a) would be constant, contradicting 1.1.1. 0 

LEMMA 1.4.4. The unit ball for II * II is a finite-sided polygon whose vertices 
are rational multiples of strict boundary classes in L. 

Proof. Let J denote the set of all ideal points x E X0 for which ox is not 
identically zero. Then for a E- V we have hlail = ExEV11x(a)l. Hence each 
vertex of the ball is contained in the zero set of one of the linear functions 
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(Dx x J. But for x E J, (DX vanishes exactly on a 1-dimensional subspace of V 
which is spanned by an element of L. Thus if X is a vertex of the unit ball then 
c = ra, where a is a primitive element of L such that 'Ix(Da) = 0 for some 
x E J. For such an element a we have fax(fa) = 0, which implies that 
IQ(x) $ cx. But by the definition of J there exists P3 E L with Ix(fJ) = 

/ 0, and hence I:(x) = oc. By 1.3.9 this implies that a is a strict 
boundary class. Since Iail is an integer, r must be rational. 

L 

Proposition 1.1.2 follows immediately from Lemmas 1.4.2, 1.4.3 and 1.4.4. L1 

1.5. Zeros at ordinary points 

This section and the next are devoted to the proof of Proposition 1.1.3. 
Recall that we are given a primitive element a of L which is not a strict 
boundary class. In addition we are given a point x of X0, and a non-zero 
element 8 of L. We must show that if 7T,(M(a)) is cyclic then Zx(fa) < Zx(f3) 
In this section we will treat the case where x is an ordinary point, and in Section 
6 we will treat the case where x is an ideal point. 

1.5.1. We denote by XO the set of all ordinary points of X0, and we let P 

denote the restriction to XO of the birational equivalence X0 X0. Note that v 
is a regular map, i.e. is well-defined at every point of XO. Thus we have a 
diagram: 

Ro 
It 

XP Xo 

We shall prove: 

PROPOSITION 1.5.2. Let x be a point of XO, and assume that ZX(fo) > ZX(f^). 
Then there exists a representation p E Ro such that 

(i) t(p) =(x); 
(ii) the image in PSL2(C) of the group p(7T,(M)) C SL2(C) is non-cyclic; 

and 
(iii) p(e(a)) = ?1. 

Note that if there exists a p satisfying (ii) and (iii) then it induces a 
homomorphism of 7T,(M(a)) = 17T,(M): a = 1I onto a non-cyclic subgroup of 
PSL2(C), and thus 71(M(a)) cannot be cyclic. Thus Proposition 1.5.2 implies 
Proposition 1.1.3 for the case of an ordinary point. 
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The proof of Proposition 1.5.2 will be based on a study of the normalization 
of the variety R0. 

1.5.3. Recall, for example from [Shf, Chapter II, Section 5], that a complex 
affine variety is said to be normal if its coordinate ring is integrally closed in its 
function field. If V is any complex affine variety, there is a complex affine variety 
V" such that C[V"] is isomorphic to the integral closure of C[V] in C(V). Thus 
V" is normal. Furthermore, there is a natural regular birational map v: VP V V 
realizing the inclusion of C[V] in its integral closure; and v is an isomorphism if 
and only if V is normal. The map v is finite-to-one [Shf, p. 116, Theorem 6]; 
hence for any subvariety Z of V, the irreducible components of v-1(Z) each 
have the same dimension as Z. 

These constructions are functorial in the sense that if 4: V -4 W is a 
dominating regular map of affine varieties then there is a unique regular map 
A": VP - W ' making the diagram 

vV V 

WV v 

commute. 
The singular set of a normal variety has codimension at least 2 [Shf, p. 111, 

Theorem 3]. In particular, a normal curve is smooth. Hence if V is an affine 
curve then VP is the curve obtained from V by resolving its singularities; this 
justifies the notation of Proposition 1.5.2. 

Using the normalization of Ro we can now complete the diagram of 1.5.1 to 
the commutative square below. 

IRV V 

o 0 

In order to prove Proposition 1.5.2 it clearly suffices to show that for every 
x E XO satisfying Zx(f) > Zx(f3), there is a point p E Ro such that tVP(k) = x 
and such that p = v(p) satisfies conditions (ii) and (iii) of 1.5.2. This assertion is 
implied by the next three results. 

PROPOSITION 1.5.4. Let a and 8 be non-zero elements of L. Suppose that x 
is a point of XO such that Zx(fa) > Z (f3). Then for every 3 E Ro with 
tV(,3) = x, the representation p = v( 5) satisfies p(e(a)) = ? 1. 
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PROPOSITION 1.5.5. For every point x of XO there is a dense subset U of 
(tv) - '(x) such that for every representation p E v(U), the image of p(77r,(M)) in 
PSL2(C) is noncyclic. 

PROPOSITION 1.5.6. The map t': R' -- XO is surjective. 

The remainder of this section is devoted to the proofs of Propositions 1.5.4, 
1.5.5, and 1.5.6. The proof of Proposition 1.5.4 is based on the following 
algebraic lemma, which will also be used in Section 1.6. 

LEMMA 1.5.7. Let v be a discrete valuation of a field F. Let A and B be 
commuting elements of SL- (Ov) such that 

v((trace A)2 _ 4) > v((trace B )2 - 4). 

Then A + 1 (mod Xv). 

Proof Since A and B commute, there is an extension field E of degree at 
most 2 over F such that A and B have a common eigenvector ( in E2. By 1.2.3 
we can extend v to a discrete valuation u of E. After multiplying ( by an 
appropriate element of E * we may assume that ( is a primitive element of (9g. 
Hence A and B are conjugate in GL2(0,) to matrices 

[a >x and [b y] 
[0 a-10 an 0 b- 1 

1.5.8. Since A and B commute we have ay + b -x = bx + aly. Hence 

(b - b-')x = (a - a-')y. 

On the other hand, (trace A)2 - 4 = (a -a- 1)2 and (trace B)2 - 4 = 
(b - bV)2. Thus the hypothesis of the lemma implies that u(a - a) > 
u(b - b-). With 5.8 this gives 

u(x) 2 u(x) - u(y) = u(a - a-') - u(b - b-) > 0. 

The inequality u(x) > 0 means that x is congruent to 0 modulo JU. We 
also have u(a - a) > 0, which implies that a ? 1 (mod /U) It follows 
that A is congruent to + 1 modulo /1U and therefore modulo X/v. k 

Proof of Proposition 1.5.4. Consider a component Q of the algebraic set 
(tv)-l(x) C R' which passes through the point A of Ro. Since tC' is non-con- 
stant, Q has codimension 1 in Ro. Since Ro is normal, its singularities have 
codimension at least 2. In particular, a generic point of Q is a smooth point of 
R' . Thus, by [Shf, p. 128], Q determines a discrete rank 1 valuation v of 
F = C(RO) = C(1Ri). A non-zero function in F is contained in (9 if and only if 
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its divisor of poles does not contain Q; it is contained in YA', if and only if its 
divisor of zeros does contain Q. Let K = C(Xo) = C(QX) and let w denote the 
valuation of K determined by x. Since t(Q) = x, it is clear that (v n K = (9, 
Thus there is an integer d such that VIK* = d w. 

1.5.9. Note that C[Ro] c C[R1i] c (U. Furthermore, for any h E C[Ro], 
regarding h as a function on R0, we have 

h ev ho P = 0 on Q - h = 0 on v(Q). 
As in 1.2.3, we consider the tautological representation P: 771(M) -> SL2(F). 

Recall that 

fa = Ie( )2 - 4 = (trace P(e(a)))2 - 4; 
similarly fa = (trace P(e(8)))2 - 4. Since x is an ordinary point we have 

Zx(fa) = W(fa) = d v((trace P(e(a)))2 - 4). 

Likewise, 

Zx(f3 ) = d. v((trace P(e(8)))2 - 4). 

Thus the hypothesis of Proposition 1.5.4 implies 

v((trace P(e(a )))2 - 4) > v((trace P(e(8)))2 - 4). 

By Lemma 1.5.7 we have P(e(a)) = ? 1 (mod wf ) 
By the definition of the tautological representation P, the entries of 

the matrix p(e(a)) are obtained by evaluating the entries of P(e(a)) at the 
point p E Rol The entries of P(e(a)) are elements of C[Ro] C (9v. Since 
P(e(a))= ? 1 (mod Sv) and since p E v((Q), observation 1.5.9 implies that 
p(e(a)) = + 1. E 

The proof of Proposition 1.5.5 is based on: 

LEMMA 1.5.10. Let x be a point of X0. Let Z denote the set of all 
representations p E t-'(x) such that the image of p(771(M)) in PSL2(C) is 
cyclic. Then Z is contained in a countable union of algebraic subsets of t- 1(x), 
each of dimension at most 2. 

Proof. We consider the countable set X= {ker p: p E Z } of normal 
subgroups of 771(M). For each Ne A"', set YN= {p E t-1(x)Ip(N) = {1}}. 
Clearly each YN is a closed algebraic subset of t-'(x), and Z C UN J=YN. We 
shall prove the lemma by showing that each YN has dimension at most 2. 

Let N E X be given. Then 771(M)/N has a central subgroup of order at 
most 2 with a cyclic quotient D. Let y denote an element of 771(M) which 
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projects to a generator of D. Then a representation p E YN is uniquely de- 
termined by the matrix p(y) and by the image of the central subgroup. The 
image of the central subgroup is either {1 } or { ? 1}. Furthermore, for any 
p E YN' the trace of p(y) is TN = IY(x). Thus there is a finite-to-one regular map 
from YN to the set of matrices of trace TN in SL2(C). Since the latter set has 
dimension at most 2, so does YN. El 

Proof of Proposition 1.5.5. First note that RO contains the discrete faithful 
representation po. Since int M has finite volume, po is irreducible. Hence by 
[C-SI, Corollary 1.5.3] we have dim RO - dim X0 = 3; i.e. dim RO = 4. Since 
R. is birationally equivalent to Ro, it also has dimension 4. It follows that for any 
point x E X0, the components of (tv)-'(x) are each of dimension at least 3. 
(Actually, since R' is irreducible and t ': R' -- X0 is non-constant, these 
components are all of dimension exactly 3.) 

By Lemma 1.5.10, there is a countable collection of algebraic subsets 
A, A ,A ... of ut- 1(v(x)), each of dimension at most 2, such that Ui, 1Ai contains 
every representation p for which the image of p(771(M)) in PSL2(C) is cyclic. 
We set U = (t)- 1(x) - Ui,1P-'(Ai). By 1.5.10, each of the sets P-'(Ai) has 
dimension at most 2. Hence U is dense in (t V) - 1(x). u 

The proof of 1.5.6 is a refinement of the proof of Proposition 1.4.4 of [C-SI]. 
It is based on the following lemma, which is similar to a result deduced in [C-SI] 
from the "Burnside Lemma." Here we offer a more geometric proof which is 
extracted from [M-SI]. 

LEMMA 1.5.11. Let F be a field and let v: F * Z be a discrete valuation. 
Suppose that F is a finitely generated subgroup of SL2(F) such that for each 
g E F trace g E (9. Then F is conjugate in GL2(F) to a subgroup of SL2((9). 

Proof: (cf. [M-SI, 11.3.17]). By considering the rational canonical form, one 
sees that each element of F is conjugate in GL2(F) to an element of SL2((9). 
Thus, by 2.1, under the action of SL2(F) on the tree T determined by the 
valuation v, each element of F fixes a vertex. According to [Se, Cor. 3 to 
Prop. 26], if a finitely generated group acts on a tree so that each element fixes a 
vertex, then there is a vertex which is fixed by the entire group. Thus F stabilizes 
a vertex of the tree T, and hence by 1.2.1 is conjugate in GL2(F) to a subgroup 
of SL2((9). 

We will also need an elementary fact from algebraic geometry. A valuation 
v of the function field C(V) of an affine variety V will be said to be supported in 
V if C[V] C Ov 
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1.5.12. Recall that for any valuation v of a field F, 0V is integrally closed in 
F. Hence a valuation of C(V) = C(VV) is supported in V if and only if it is 
supported in V>. 

LEMMA 1.5.13. Suppose that f: V -> C is a non-constant regular map from 
a complex affine variety to a complex affine curve. Regard C(V) as an extension 
of C(C). Let x be a smooth point of C and let w be the valuation determined by 
x. Assume that w extends (in the sense of Section 2) to a discrete valuation of 
C(V) supported in V. Then x is in the image of p. 

Proof. Note that J= I1 n C[C] is the ideal of functions in C[C] that 
vanish at x. Hence the algebraic subset ?-'(x) of V is defined by the ideal 
J. C[V]. Hence in order to prove that x is in the image of 4, it is enough to 
show that _s C[V] is a proper ideal in C[V]. 

By hypothesis, w extends to a valuation v of C(V) which is supported in V. 
We have C[V] C (v and f0c #w C #v. Hence f. C[V] is contained in #v 
and is therefore proper. E 

Proof of Proposition 1.5.6. Let x be a point of XO and let w denote the 
valuation of C(XO) = C(X') determined by x. By Theorem 1.2.3, w extends to 
some valuation v of C(RO). As in 1.2.4, we consider the tautological representa- 
tion P: 7r1(M) -* SL2(F). For each y E 7r1(M) we have 

trace P(y) = I E C [X0] C Ow C O. 

Hence by Lemma 1.5.11, there is an element A of GL2(F) such that 
A - P(71(M)) A - 1 c SL2(O9). Using A we define a rational map A: Ro Ro 
as follows. If a is an element of GL2(C) then let i. denote the automorphism of 

SL2(C) given by ia(() = ala-'. If A = [a b] then for p E Ro let A(p) 

denote the matrix [a(p) b(p) ] CL2(C). We then set A(p) = 'A(p) op. 

Since v: RK R is birational, A determines a rational map 4,: RK -K RK. 
Moreover, we have the following commutative diagrams of rational maps: 

0 

Let L denote the subvariety of R' which is the closure of the image under 
4V of the set of regular points of 4/. Thus 4' co-restricts to a dominating rational 
map A: R~ -* L. We will show that x E t "(L); this will complete the proof that 
tp is surjective. 
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Since I is dominating, it induces a homomorphism C(L) -- C(QRO) which 
may be used to pull the valuation v back to a valuation u on C(L). The 
commutative diagram 

0 

av X tv 
t"I 

gives rise to the commutative diagram 

F C(L) 
tX 1(tf lL)* 

K 
of function fields. This shows that u is an extension of w. Thus by Lemma 1.5.13 
we need only show that u is supported in L. 

Note that the coordinate ring C[RO] is generated by the entries of the 
matrices P(y) for y E 771(M). Since iA(P(07l(M))) c SL2(Ov), it follows that 
4*(C[R1]) C (U. Since a discrete valuation ring is integrally closed we have 
A *(C[R ]) C (v9. In particular i *(C[L]) C (C or equivalently C[L] C (u 

1.6. Zeroes at ideal points 

In this section we complete the proof of Proposition 1.1.3. In Section 1.5 we 
gave the proof in the case where the point x E X0 in the hypothesis of 1.1.3 is 
an ordinary point. In the case where x is an ideal point of X0, the conclusion of 
1.1.3 follows immediately from the following result: 

PROPOSITION 1.6.1. Let x be an ideal point of XO. Let a and 8 be non-zero 
elements of L. Suppose that a is primitive and is not a strict boundary class, and 
that 

ZX(fa) > ZJ(fA) 

Then there is a closed surface in M which is incompressible in M(a). In 
particular 7( M( a)) is not cyclic. 

The proof of Proposition 1.6.1 will occupy this entire section. Throughout 
the section, we consider a fixed ideal point x and fixed elements a and 8 of L 
which satisfy the hypotheses of 1.6.1. 

1.6.2. In particular we have Zx(fa) > 0, and hence Ie(a)(x) is finite. Since a 
is not a strict boundary class, it follows from Proposition 1.3.9 that Ie(O)(X) / x 
for all P3 E L. 

Next we consider an action of gj(M) on a tree T associated to the ideal 
point x. Recall that by 1.2.6, no point of T is fixed by 771(M). Thus, it follows 
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from 1.3.2 that any surface associated to the action is non-empty. Since for every 
g E 7Tl(dM) we have Ig(x) # so, each element of '7T1(dM) fixes some point of T. 
Hence by [Se, Cor. 3 to Prop. 26], there is one vertex of T which is fixed by 
1( AM). It therefore follows from Proposition 1.3.8 that there is a closed surface 

associated to the action of gj(M) on T. 
The method of proof of 1.6.1 is to show that in the set of all closed surfaces 

in M which are associated to the action of 71(M) on T, there is one which is 
incompressible in M( a). 

If S is a closed surface then we define 

X- (S) = E - X(Si) 

where the sum is taken over all components Si of S which are not 2-spheres. We 
denote by #(S) the number of components of S. The complexity of S is the pair 
c(S) = (X- (S), #(S)), which will be regarded as an element of the set N X N of 
pairs of non-negative integers with the lexicographic ordering. 

1.6.3. Among all closed surfaces associated to the action of 71(M) on T we 
fix one, S, of minimal complexity. The rest of this section will be devoted to 
proving that S is incompressible in M(a). This will complete the proof of 
Proposition 1.6.1. 

The first step is easy: 

LEMMA 1.6.4. The surface S is essential in M. In particular every compo- 
nent of S has genus greater than 1. 

Proof. We have observed that a surface associated to the action of 1( M) on 
T is non-empty. If some component of S is a 2-sphere or a boundary-parallel 
surface, then it follows from 1.3.6 that there is a surface which is associated to 
the action and which is obtained from S by deleting one or more components. 
This contradicts the minimality of c(S). 

Now suppose that there is a compressing disk D for S. By 1.3.6, the surface 
S' obtained by compressing S along D is associated to the action. If the 
component SO of S containing 3D has genus greater than 1, then x (S') < 

X- (S), and again the minimality of c(S) is contradicted. If So is a torus then 
c(S') = c(S), and some component of S' is a 2-sphere. By 1.3.6 we can then 
produce an associated surface by deleting one or more components of S. Again 
this contradicts the minimality of c(S). 

This proves that S is essential. Since M contains no essential tori, it follows 
that every component of S has genus greater than 1. c] 

The main step in the proof that S is incompressible in M(a) uses the 
following strong property of the action of gj(M) on T. 
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LEMMA 1.6.5. Let s be any vertex of T which is fixed by 71( 3M) C 7T(M). 
Then the element e(a) of 1( 3M) acts trivially on the link of s in T. 

(Note that if the subgroup 71(3M) and the element a are conjugated by an 
element of 71(M), the truth of the above statement is unaffected. Thus the 
statement is consistent with the conventions of 1.0.2.) 

Proof. Let w denote the valuation of K = C(X0) defined by the ideal point 
x of X0. Since by 1.6.2, I,(x) and I,(x) are finite, we have w(f,) = Zx(ff) and 
w(f;) = Zx(f;). According to 1.2.5, the tree T is defined in terms of some 
extension v of w to F = C(RO). There is a positive integer d such that 
vIK* = d w. 

The action of 71(M) on T is defined by the tautological representation 
P: 71(M) -* SL2(F). The vertices of T are equivalence classes of (9v-lattices in 
F2. Since GL2(F) acts transitively on the vertices of T, we may assume after 
conjugation by an element of GL2(F) that the given vertex s is the class of the 
standard lattice (v2. By 1.2.1 the stabilizer of this vertex in SL2(F) is SL2( v). 
Thus the hypothesis of the lemma implies that P(7T1(3M)) C SL2( v) 

The hypothesis of Proposition 1.6.1 gives 

v((trace P(e(a)))2 - 4) = d w(I2 - 4) 

= d w(f.) 
= d ZX(fa) 

> d Zx(f;) = v((trace P(e(8)))2 - 4). 

Since P(e(a)) and P(e(8)) commute, Lemma 1.5.7 implies P(e(a)) 
+ 1 (mod /v) By 1.2.2 this is equivalent to saying that e(a) acts trivially on the 
link of s. cz 

1.6.6. Proof of Proposition 1.6.1. As observed earlier it suffices to show that 
S is incompressible in M(a). The proof will proceed by contradiction. Assume 
that S is compressible in M(a). Since S has no sphere components by Lemma 
1.6.4, there must exist a compressing disk D for S in M(a). 

Recall that M(a) is obtained from M by attaching a solid torus J along 3M 
so that the boundary of a meridian disk in J represents the homology class a in 
3M. We may suppose D to be chosen so that each component of D n) J is a 
meridian disk. Thus P = D r M is a planar surface whose boundary compo- 
nents are c = 3D and simple closed curves a1,..., ak representing the ho- 
mology class a in 3M. 

We shall denote by N the closure of the component of M(a) - S that 
contains 3M. Let V be a regular neighborhood of D in M(a) which meets J in 
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a regular neighborhood of D rn J in J. Consider the surface Q in M(a) obtained 
by compressing S along D, using the neighborhood V: Explicitly we have 
Q = (S U dV) - int(S n dV). 

1.6.7. Since by Lemma 1.6.4, every component of S has negative Euler 
characteristic, and since Q is obtained from S by a compression, we have 
X_ (Q) < X_ (S). Set Q = Q n M. Thus Q- is obtained from S by replacing 
an annular neighborhood of w by two parallel copies of P. 

Claim 1.6.8. The surface Q- C M is associated to the action of w1(M) 
on T. 

Proof of claim. We consider the complex X determined by the action as 
in 1.3.3. Recall that there is a natural isomorphism between the groups '71(M) 
and g,(k) of covering transformations. By Proposition 1.3.4 there is a map 
4: M -- -X' which is transverse to & with ?-1(g) = S, and which induces the 
natural isomorphism up to conjugation. 

We now fix base points q E co c ScNc M and r=4)(q) c S. Any 
choice of lifts q and F of q and r determines identifications of 7T,(M) with 
7T1(M, q) and of 7T,(,) with 7T,(X, r). We may choose qc and F so that in terms 
of these identifications, 4)*: 71( M, q) --(*, r) is the natural isomorphism 
between g7l(M) and 7T,(*). By 1.3.5, there is an edge e of T with +(S) C Se 
and 7T1(J* r) = 7Te. There is a vertex s incident to e such that +(N) C Jf; 
again by 1.3.5 we have 7T,(6s, r) = gs 

Also AM C N. Hence up to conjugacy in 7T1(N, q), there is a natural 
identification of grl( dM) with a subgroup of gr,( N, q). Thus ) 0*(7( d M)) is a 
subgroup of 7,(J*s, r) defined up to conjugacy in 7T,(*s, r). Since 7T,(Ys, r) fixes 
the vertex s of T, it follows from Lemma 1.6.5 that every conjugate of 4*(e(a)) 
in 7T,(Ys, r) acts trivially on the link of s. 

All but one of the boundary components of the planar surface P are curves 
in 3M C N which represent the conjugacy class of e(a) in 7r1(N, q). Hence if 
0: P -* N denotes the restriction of 4), then 0*(7T,(P, q)) is contained in the 
normal closure of >*(e(a)) in 71( Xs). Therefore )*(7T,(P, q)) acts trivially on 
the link of s. In particular, O*(7T1(P, q)) C ge = g1(X*, r). Since Yk is aspheri- 
cal, this implies that there exists a homotopy 0: P X [0, 1] -*) constant on a, 
such that e0 = 6 and E1(P) C iVe. Such a homotopy e can clearly be extended 
to a homotopy F: M x [0, 1] X, constant outside a small neighborhood of V 
in N, such that (D = 4 and Ip'(D k) = S U aV. Furthermore, 4D1 can be 
perturbed to a map A: M X-> "', transverse to &, such that A -1(g) = Q. Since 
4 is homotopic to 4 it then follows from Proposition 1.3.4 that Q is associated to 
the action. F] 
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We now apply Corollary 1.3.7 to the surface Q- . This gives a sequence of 
surfaces Q- = - Qj ,..., Q-, each associated to the action of 7r1(M) on T. 
Each Qt-? 1 is obtained from Qj by compressing along a disk or deleting certain 
components. Furthermore, Qn- is essential in M. For each i we clearly have 

C c Q. 
In particular, any boundary component of Qn- must represent the homology 

class a in L. Note also that, since Q- is associated to the action of 71(M) on T, 
it follows from Proposition 1.2.7 that Qn- cannot be a fiber in a fibration of M 
over S1. Since a is not a strict boundary class it follows that Q - is closed. 

Next we define a closed surface Qj in M(a) by adding meridian disks of J 
to the boundary components of QJ. We have Q0 = Q and Qn = Qn. 

Note also that Qi+1 is obtained from Qj either by surgery on a (possibly 
trivial) simple closed curve or by deleting certain components. Hence 

x (Qn) < x- (Qn-1) x (Qo) = X (Q) 
which with 1.6.7 gives x- (Qn) < x (S), and hence c(Qn) < c(S). But Qn = 
Q- is a closed surface associated to the action. This contradicts the minimality of 
c(S). Hence the assumption in 1.6.6 that S is compressible in M(a) is false, and 
the proof of Proposition 1.6.1 is complete. [2 

Chapter 2 

2.0. Introduction 

Let M be a compact, connected, irreducible 3-manifold such that 3M is a 
torus. In light of Theorem 1.0.1, we shall be concerned in this chapter with the 
case of the Cyclic Surgery Theorem in which either M contains an essential torus 
or one of r, s is a strict boundary slope. To state the theorem that we shall use to 
deal with the first possibility, we need the following standard definition. Let V 
be a solid torus. A cable space is the complement of an open tubular neighbor- 
hood of a (p, q)-cable of the core of V, where p, q are coprime integers with 
q > 2. 

THEOREM 2.0.1. If M contains an essential torus S which compresses in 
M(r) and M(s), then either A(r, s) < 1 or S and AM cobound a cable space 
in M. 

A closed, connected 3-manifold is a Haken manifold if it is irreducible and 
contains an incompressible surface. A lens space is a closed 3-manifold of 
Heegaard genus 1 whose fundamental group is finite (cyclic). (Thus S3 and 
S 1 x S2 are excluded.) 
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The next two theorems, together with Addendum 2.0.4, establish the Cyclic 
Surgery Theorem in the case where one of the given slopes is a strict boundary 
slope. 

THEOREM 2.0.2. Suppose that dim H1(M; Q) > 1. If M(r) and M(s) have 
cyclic first homology groups and are not Haken manifolds then A(r, s) < 1. 

THEOREM 2.0.3. Suppose that dim H1(M; Q) = 1. If r is a boundary slope, 
then either 

(i) M(r) is a Haken manifold; or 
(ii) M(r) is a connected sum of two lens spaces; or 
(iii) M contains a closed incompressible surface which remains incom- 

pressible in M(s) whenever A(r, s) > 1; or 
(iv) M fibers over S1 with fiber a planar surface having boundary slope r. 

We remark that possibility (iv) was overlooked in the statement of Proposi- 
tion 2 of the announcement [CGLS]. Note that in that case M(r) is homeomor- 
phic to S' x S2, which has cyclic fundamental group. However, we have the 
following addendum to Theorem 2.0.3. 

Addendum 2.0.4. In case (iv) of Theorem 2.0.3, if r is a strict boundary 
slope then conclusion (iii) holds also. 

The chapter is organized as follows. In Sections 2.1, 2.2 and 2.3 we take the 
first steps towards proving Theorem 2.0.3. We start with an essential surface F 
in M having boundary slope r, and consider the corresponding closed surface F 
in M(r). We show that if F is suitably chosen, then either F is an incom - 
pressible surface of positive genus and conclusion (i) holds; or F is a separating 
2-sphere which decomposes M as a connected sum of two lens spaces, giving 
conclusion (ii); or F is a non-separating 2-sphere and conclusion (iv) holds; or M 
contains a closed essential surface S, disjoint from F, with certain additional 
properties. The main tool used is a mild extension of a result of Jaco [J] giving 
conditions under which the addition of a 2-handle to a 3-manifold yields a 
manifold with incompressible boundary. This work is begun in Section 2.1, and 
completed in Section 2.2, in the case that F has positive genus, and in Section 
2.3, in the case that F is planar. 

To complete the proof of Theorem 2.0.3, we need to show that the closed 
surface S remains incompressible in M(s) whenever A(r, s) > 1. More gener- 
ally, we consider the question: For which slopes r does a given closed essential 
surface S in M compress in M(r)? To study this, we assume that there exist 
compressing disks for S in M(r) and M(s), say, and carry out a graph-theoretic 
analysis of the intersection of the two corresponding planar surfaces in M. In the 
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case that S is a torus, this leads to Theorem 2.0.1. (An earlier result along these 
lines was obtained by Litherland [L], who used the same general approach.) A 
very similar argument proves Theorem 2.0.2. Here, if M(r) and M(s) are not 
Haken manifolds, then, since they have positive first Betti number, they each 
contain a 2-sphere which does not bound a 3-ball, and we apply the same 
analysis to the intersection of the two planar surfaces in M corresponding to 
these 2-spheres. Again, an earlier result along these lines was proved in [Gr-L]. 
By refining the graph-theoretic analysis used to prove Theorems 2.0.1 and 2.0.2, 
we obtain information on the general question of when a closed essential surface 
in M compresses in M(r). In particular, making use of the special properties of 
the surface S that arises in the proof of Theorem 2.0.3, we show that it satisfies 
conclusion (iii). 

Section 2.4 contains the statements of the results that we prove on the 
question of when a closed essential surface compresses under Dehn surgery. We 
also show in that section how Theorems 2.0.1 and 2.0.2 follow from these results. 
In Section 2.5 we set up the graph-theoretic machinery that we will use in the 
proofs, and establish some basic connections between the graph theory and the 
topology. We also state the main graph-theoretic propositions that we require, 
and show how they imply the theorems stated in Section 2.4 and enable us to 
complete the proof of Theorem 2.0.3, as well as prove Addendum 2.0.4. The 
main graph-theoretic analysis is carried out in Section 2.6, in which we prove the 
propositions stated in Section 2.5. After Theorems 1.0.1, 2.0.1, 2.0.2 and 2.0.3, 
and Addendum 2.0.4, the proof of the Cyclic Surgery Theorem reduces to a 
consideration of manifolds which contain cable spaces. This is discussed in 
Section 2.7. Finally, in Section 2.8, we give a proof of Corollary 7. 

2.1. Dehn surgery along a boundary slope 

In this and the next two sections M will be a compact, connected, 
irreducible 3-manifold, such that d M is a torus and dim H1(M; Q) = 1. 

We wish to analyze M(r) in the case that r is a boundary slope. To do this 
we consider an essential surface F in M with boundary slope r which is minimal 
in an appropriate sense, and study the handle decompositions of certain associ- 
ated submanifolds of M and M(r). We begin this analysis in the present section, 
and refine it in Sections 2.2 and 2.3, which treat the cases that F is non-planar 
and planar respectively. Specifically, we will show that either F is non-planar 
and conclusion (i) of Theorem 2.0.3 holds, or F is planar and either conclusion 
(ii) or (iv) of Theorem 2.0.3 holds, or M contains a closed incompressible sur- 
face S with certain properties. Sections 2.4, 2.5, and 2.6 are devoted largely 
to showing that this surface S remains incompressible in M(s) whenever 
A(r, s) > 1. This is conclusion (iii) of Theorem 2.0.3. 
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It will be convenient to introduce the following notation. If S is a surface, 
and C1,.. ., Cn are disjoint simple loops in S then a(S; U n Ci) will denote the 
surface resulting from surgery on S along C1,..., Cn. 

If Q is a 3-manifold, and C1, .., Cn are disjoint simple loops in aQ, then 
T(Q; U n Ci) will denote the 3-manifold obtained by attaching 2-handles to Q 
along disjoint regular neighborhoods of C1,..., Cn. 

Note that if C1, .C..,C C S C a Q, then a(S; U>n Ci) C dr( Q; U n=1Ci). 
The following handle addition lemma will play a key role in our analysis of 

M(r). 

LEMMA 2.1.1. Let Q be an irreducible 3-manifold, S a surface in 3Q which 
is compressible in Q, and C a simple loop in S such that S - C is incompressible 
in Q. Suppose that a(S; C) is not a 2-sphere. Then T(Q; C) is irreducible and 
a(S; C) is incompressible in T(Q; C). 

In the form stated, this is proved in [C-G]. See also [J], [Jo], [P], [Schl], and 
[D-S]. 

By a compression body we shall mean a cobordism W (rel d) between 
surfaces 3+ W and d W such that W 3_ + W x I U 2-handles U 3-handles and 
d_ W has no 2-sphere components. It follows that W is irreducible and a_ W is 
incompressible in W. If Q is an irreducible 3-manifold and F is a surface in 
a Q, then there is a maximal compression body W C Q with a+ W = F, 
which is unique up to isotopy. (See [Bo, ?2].) The inner boundary of W is F- = 

d_ W U dF X I. Thus dF- = dF, and F- is incompressible in Q. 
There is a disjoint union of disks (D*, 3D*) C (Q, F) such that, for a 

regular neighborhood N( D *) of D * compatible with a collar A Q x I of A Q in 
Q. we have W = F X I U N(D*) U 3-handles. Note that F- c(F; AD*) 
with all 2-sphere components removed. 

Our assumption that dim H1(M; Q) = 1 implies that H2(M) = 0. It follows 
that if (G, aG) c (M, 3M) is a non-separating surface then [3G] 0 0 in 
H1( 3M), and hence, by successively tubing adjacent oppositely oriented compo- 
nents of d G and then compressing, we obtain an essential non-separating 
surface (GC aG) c (M, 3M) such that acG 0 and all components of aG, 
when given the orientations induced by some orientation of G, are homologous 
on 3M. 

Now let r be a boundary slope on AM, and let (F, dF) C (M, AM) be an 
essential separating surface with boundary slope r, such that each component of 
F has non-empty boundary, and such that the number of components of 3F is 
minimal subject to these conditions. Thus F either is connected or has exactly 
two components, each of which is non-separating. In the latter case we shall 
assume (as we may without loss of generality) that F consists of two parallel 
copies of a non-separating surface G, which (by the argument given in the 
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previous paragraph) necessarily has all its boundary components oriented coher- 
ently on A9M. Note that [F, 9F] = 0 in H2(M, AM). 

We shall refer to the two cases described above as the connected and 
disconnected cases, respectively. They will for the most part be treated in 
parallel; the main divergence occurs when F is planar. 

Note that the disconnected case can only occur when r is the unique slope 
that corresponds to an element in the kernel of the map H1( AM; Q) -. H1( M; Q). 

The manifold obtained by cutting M along F has two components, X and 
X', say. (In the disconnected case, X' (say) is homeomorphic to G X I.) The 
number of components of dF is even, say 2n (n ? 1), and these components cut 
AM into parallel annuli Al, . ., An) A'1 . . ., A'n such that AX = F U Un lAi, 
AX' = F U Un~ A'. Note that each of AX and AX' has, in the connected case, 
genus f + n, where f is the genus of F, and in the disconnected case, genus 
2g + (n-1), where g is the genus of G. Let Ci, Ci' be a core of Ai, A'. 
respectively. Regarding the solid torus J as the union of 2n 2-handles with 
attaching regions Al,..., An A I .. . A1, we see that M(r)= M U J 
T(X; UU iCi)UT(X'; Un lCiG) = XUpX', say, where F = AX = AX' is the 
closed surface obtained from F by capping off aF with meridian disks of J. 

For l<ionlet F7=FUAic aX; so aF,=U U aA.I Let Vi bea 
maximal compression body for Fi in X. The inner boundary of Vi, Fi, is 
incompressible in X. Since M = XUFX' and F is incompressible in M, it 
follows that Fi- is also incompressible in M. Since the number of boundary 
components of Fi- is 2(n - 1), our assumption on F implies that every 
separating component of Fi- with non-empty boundary is a boundary-parallel 
annulus. Furthermore, since [Fi- , aFi-] = [Fi, d Fi] = [F, 8F] = 0 in 
H2(M, AM) (and H2(M, dM) - Z), the number of non-separating components 
of Fi- is even. It follows that if Fi- has a non-separating component then it has 
one with at most (n - 1) boundary components. Since, as noted above, any 
non-separating surface in M has non-empty boundary, taking two parallel copies 
of such a component would contradict our minimality assumption on F. We 
conclude that Fi- consists of (n - 1) annuli, each parallel into AM, together 
with some closed surface (possibly empty) in int X. Let B be one of the annuli. 
Since B separates M, and int B r) Fi = 0, and Fi is connected, it follows that 
dB = dA1 for some j 0 i. We may therefore number the annuli Bi'), j #* i, so 
that dB 'P =aA (y#). 

LEMMA 2.1.2. For 1 ? i ? n, there exist disjoint disks E(J) in X, j 0 i, 
such that aE P meets C. transversely in a single point and is disjoint from Ck if 
k # i or j. 

Proof Fix i, 1 < i < n, and recall the annuli B j / i. Each B 
~ 
P is 

parallel into a M. Let U. be the solid torus realizing this parallelism. Then U. c X 
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(otherwise F C U ), dU. = A1 U B P, and the U. are disjoint. Choose a meridian 
disk of U7 with boundary a1 U /,3, where a1, ,/3 are spanning arcs of the annuli 
A1, B~1( respectively. Now Vi ? Fi X I U 2-handles U 3-handles; dually, Vi 
a_ V. x I U 0-handles U 1-handles. An isotopy of i,3(rel 8) in BO) will move it 
off the disks that constitute the attaching regions of the 1-handles, and then a 
further isotopy (rel a) in Vi (using the product structure of 8 Vi X I) will take it 
to an arc 3' in Fi C AX. A corresponding isotopy and extension of the chosen i 
meridian disk of Uj gives a disk E i) in X with 3Eii = 1 UP. These disks 
E5i), j # i, satisfy the conditions stated. 

Let Wi be the (possibly punctured) compression body in X with a+ Wi = AX 
defined by Wi = AX x I U N(U IiEWP), where N(U PIE'i)) is a suitable regu- 
lar neighborhood of Uj E IP. Thus dWi is the disjoint union of dX and _ W8 
where d_ Wi is a (closed) connected surface which, in the connected case, has 
genus f + 1, and, in the disconnected case, genus 2g. Hence Wi is a compres- 
sion body unless F is planar and disconnected, in which case X = Wi U 3-ball is 
a handlebody of genus n - 1. 

LEMMA 2.1.3. For 1 < i < n, r(Wi,UiC1) - d W. x I 

Proof. This follows by canceling the 2-handle corresponding to C1 with 
E$1i), j # i. LI 

For O < k < n, let Xk = (X;U>kC ). Thus X0 = X, and X" = X. We 
shall apply the following lemma with k = n - 1 in Section 2.2, and with 
k = n - 2 in Section 2.3. 

LEMMA 2.1.4. If F is either non-planar or connected then, for 0 < k < 
n - 1, Xk is irreducible and dXk - Un= k +C is incompressible in Xk. 

Proof We prove this by induction on k, using Lemma 2.1.1. The assertion 
holds for k = 0, since X is irreducible and F is incompressible in X. So suppose 
1 < k < n - 1, and that the assertion holds for k - 1. Thus Xk-L is irreducible 
and dXkL - =kCi = (dXkL - Ui=k+lCi) - Ck is incompressible in XkL1. 
Write Sk = dXk-IU =k+lCi. We shall apply Lemma 2.1.1 with Q = Xk-L, 
S = Sk, and C = Ck. Since Xk = T(Xk-L; Ck), this will establish the conclusion 
of the lemma for k, provided we show that Sk is compressible in Xk - 

To do this, let (D *, dDf*) C (X, Fk) be a disjoint union of disks such 
that the maximal compression body Vk for Fk in X can be expressed as 
Fk X I U N(Df*) for a suitable regular neighborhood N(Df*) of D *. Since 
dDk* n Ci = 0, i * k, we have (D,*, dD*) C (Xk1, Sk). We claim that some 
component of dD* is essential in dXkL, and a fortiori in Sk. For if not, then 
a(dXk1; dDf*) would be homeomorphic to the disjoint union of dXk-L with 
some 2-spheres. However, dXk-L is a connected surface which has, in the 
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connected case, genus f + n - (k - 1) ? f + 2 ? 2, and, in the disconnected 
case, genus 2g + (n - 1) - (k - 1) ? 2g + 1 ? 3 (since g ? 1 here by hy- 
pothesis). On the other hand, a( aX; a D, ) contains n - 1 tori TV), correspond- 
ing to the tori A u B 0) k, and therefore a(dXk-1; D*)= 

a~u~ax;aD*);uk k 
,adteeor ~xL Df a(a(dX; dDk -1Cj) contains U'=k? T0), a disjoint union of tori which is 

non-empty since k < n - 1. This contradiction completes the proof of the 
lemma. O 

We note for completeness that if F is disconnected and planar then Xn- I is 
a 3-ball. 

2.2. The non-planar case 

As a first approximation to the conclusion of Theorem 2.0.3 in the case that 
F is non-planar, we have the following proposition. 

PROPOSITION 2.2.1. Suppose that F is non-planar. Then either 
(i) M(r) is irreducible and F is incompressible in M(r); or 
(ii) M contains a closed incompressible surface S which is disjoint from F. 

We shall ultimately show that the surface S remains incompressible in M(s) 
whenever A(r, s) > 1. Our proof of this will require some additional properties 
of S. These are contained in the following addendum to Proposition 2.2.1. 

Addendum 2.2.2. In conclusion (ii) of Proposition 2.2.1, we may assume 
that the surface S cobounds with AM a manifold N in M such that either 

(i) N contains an annulus with one boundary component in S and the 
other having slope r in AM; or 

(ii) (a) N(r) is irreducible; and 
(b) there is a compressing disk for S in N(r) which misses F; and 
(c) no compressing disk as in (b) meets only a single component of 

AM- aF. 

Proof of Proposition 2.2.1. Recall the notation established in Section 2.1, 
and suppose that d Wn is compressible in X. Since T( W,; U Iz-C-i) - W X I 
by Lemma 2.1.3, it follows that aXn-i is compressible in Xn - By Lemma 2.1.4 
(with k = n- 1), Xn~ is irreducible and aXn-1 - Cn is incompressible in 
X n- Hence, by Lemma 2.1.1, X = T(Xn-1; Cn) is irreducible and F is incom- 

A A 

pressible in X. Similarly, if d Wn' is compressible in X', then X' is irreducible 
A A A A A 

and F is incompressible in X'. Therefore M(r) = XUpX' is irreducible and F 
is incompressible in M(r), which is conclusion (i). 

Otherwise, _ Wn (say) is incompressible in X, and hence in M = XUFX', 
giving conclusion (ii). O 
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The argument above in the case that n = 1 and F is disconnected is the 
same as that given in [J]. Also, the case in which n = 1, F is connected and 
X, X' are handlebodies is treated in [P]. 

Let W, = T(W,; U' t Cr). The observations contained in the following lemma 
will be needed in the proof of Addendum 2.2.2. 

LEMMA 2.2.4. If F is non-planar then 

(a) Wn is irreducible; 
(b) F is incompressible in Wn; and 
(C) d- Wn is compressible in Wn. 

Proof. By Lemma 2.1.3, T(Wn;U72=Cd) - Wn X I, and hence Wn 
-(d W, X I; C). Also, Cn is essential in dXn~1 = d_ W x O}, since each 
component of dX cut along U n= 1C1 (which is homeomorphic to F) is non-planar. 
Hence W, is a compression body with a single 2-handle whose attaching circle is 
essential. Conclusions (a), (b) and (c) follow. M 

We remark that if F is planar and connected, then d_ Wn is a torus and Cn 
is essential in d_ W x {O}, since C1,. .., Cn are homologically independent in 
dX. Hence W, is a punctured solid torus, so that conclusion (c) still holds. We 
shall use this in Section 2.3. 

Proof of Addendum 2.2.2. Recall that conclusion (ii) of Proposition 2.2.1 
arises when (without loss of generality) d_ W is incompressible in X. We 
distinguish two subcases. 

(2.A) K W' is incompressible in X'; 

(2.B) K W' is compressible in X'. 

(In the disconnected case, (2.B) always holds, since X' is a handlebody.) 
First note that since d_ W, is incompressible in X, W, is the unique (up to 

isotopy) maximal compression body for dX in X. Since d_ W. is homeomorphic 
to d_ W for all i, 1 < i < n, it follows that all the Wi are isotopic. Let us 
write W = Wi S- = d_ W.. Similarly, in case (2.A) above, let W' = Wj', 
S/ = K Wi'. 

In case (2.A), let S = S US' and N = WUFW'. In case (2.B), let 
S = S_ and N = WUFX'. 

A A 

In case (2.A), N(r) = WUP W/, which is irreducible by Lemma 2.2.3. In 
case (2.B), N(r) = WUPX/, which is irreducible by Lemma 2.2.3 and the fact 
that X' is irreducible and F is incompressible in X (see the proof of Proposition 
2.2.1). Thus (ii)(a) of the addendum is satisfied. 

A 

By Lemma 2.2.4, S_ is compressible in W. This shows, in both cases (2.A) 
and (2.B) that (ii)(b) holds. 
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Finally, consider (ii)(c). First suppose that we are in case (2.B). Any 
compressing disk for S = S_ in N(r) which misses F lies in W. If there were 
such a disk which met only a single component of dM - dF, then there would 
be a planar surface in W with one boundary component essential in S and all 
other boundary components in a single annulus Ak, say. Hence S would 
compress in T(W; Ck) = T(Wi; Ck), 1 < i < n. If n > 1, we could choose i # k, 
and thereby obtain a contradiction to Lemma 2.1.3. Therefore n = 1. But in that 
case, W is just a collar dX x I of dX in X, and condition (i) of the addendum is 
satisfied by taking the annulus C1 x I C dX x I C N. In case (2.A), we ad- 
ditionally apply the same argument to S' in W', showing that again either 
S = S_ U S' satisfies condition (ii)(c) or n = 1 and S satisfies condition (i). Z 

Remark. It is actually easier in case (2.A) to show that S remains incom- 
pressible in M(s) if A(r, s) > 1, than in case (2.B). Specifically, this follows from 
Theorem 2.4.5, which in turn is a direct consequence of the graph-theoretic 
Proposition 2.5.6, and the latter is easier to prove than the corresponding 
graph-theoretic proposition (Proposition 2.5.9) that is needed to handle case 
(2.B). However, since the argument in case (2.B) also applies to case (2.A), for 
ease of organization we have chosen not to separate the two cases. 

2.3. The planar case 

The purpose of this section is to prove the following proposition. Recall that 
if F is disconnected it consists of two copies of a non-separating surface G. 

PROPOSITION 2.3.1. Suppose that F is planar. In the connected case, either 
(i) F decomposes M(r) as a connected sum of two lens spaces; or 
(ii) M contains an incompressible torus which is disjoint from F and 

which compresses in M(r). 
In the disconnected case, 

(iii) M fibers over S1 with fiber G. 

For the connected case we shall need the following lemma. 

LEMMA 2.3.2. Let C1, C2 be disjoint simple loops in the boundary of a 
handlebody X of genus 2, with the property that there exist disks E1, E2 in X 
such that Ci intersects dEi transversely in a single point, i = 1,2. Then either 

(i) T(X; C1 U C2) is a punctured lens space; or 
(ii) aX - C1 U C2 is compressible in X. 

To prove Lemma 2.3.2, we first prove a purely algebraic lemma, which is an 
easy consequence of Nielsen's "sign condition" for a primitive element of a free 
group of rank 2 [N]. 
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will denote the conjugacy class of an element in a group. A set of 
elements { xl, . . ., x } of a free group F is a basis-up-to-conjugacy for F if there 
exists a basis { a I, . . ., a)} for F such that [Xi] = [a i], 1 < i < n. Recall that an 
element of a free group F is primitive if it belongs to some basis for F. Finally, 
K ) denotes normal closure. 

LEMMA 2.3.3. Let x and y be primitive elements of a free group F of rank 2. 
Then either 

(i) HI(F/(x, y)) is cyclic of order k, 1 < k < x; or 
(ii) {tx, y} is a basis-up-to-conjugacy; or 
(iii) [XI = [y+1. 

Proof Since x is primitive, F has a basis of the form { x, z }. Let w be a 
cyclically reduced word in x, z such that [y] = [w]. By [N], since y is primitive, 
all the exponents of z in w have the same sign. Hence either conclusion (i) holds 
or z occurs at most once in w, with exponent + 1. Therefore, we may take w to 
be either x' or xz+ 1, for some integer n. In the first case we must have 
n = + 1 (since y is primitive), and we obtain conclusion (iii). In the second case, 
since { x, x nz + 1 } is a basis for F. we obtain conclusion (ii). O 

Proof of Lemma 2.3.2. First note that since C1 and dE1 (say) are dual, 
T(X; C1 U C2) is obtained by attaching a 2-handle to a solid torus. 

The loops C1 and C2 (when oriented) determine conjugacy classes [C1], 
[C2] in 77(X). The existence of the disk Ei implies that [Ci] is the conjugacy 
class of a primitive element of v1(X), i = 1,2. Therefore Lemma 2.3.3 applies. 

If case (i) of Lemma 2.3.3 holds, then we obtain conclusion (i) of Lemma 
2.3.2. 

In cases (ii) and (iii) of Lemma 2.3.3, we use the result of Zieschang [Z] 
that the minimal geometric length of a system of disjoint simple loops in 
the boundary of a handlebody is equal to its minimal algebraic length. 
(The geometric (resp. algebraic) length is computed from the cyclic words 
(resp. cyclic reduced words) that record the intersections of the loops with the 
boundaries of a complete system of meridian disks for the handlebody. For 
further discussion and a short proof of Zieschang's theorem, see [Wa2]. For an 
even shorter proof, see [K].) In the present situation, this implies that there exist 
disjoint disks D1, D2 in X, such that X cut along D1 U D2 is a 3-ball, with the 
property that, in case (ii) of Lemma 2.3.3, Ci meets aDi transversely in a single 
point and is disjoint from dDj, i = 1, 2, j # i, and in case (iii), each of C1 and 
C2 meets dD1 transversely in a single point and is disjoint from dD2. In both 
cases it follows that aX - C1 U C2 is compressible in X, giving conclusion (ii). El 

Proof of Proposition 2.3.1. (a) The connected case. Recall the surfaces 
_ Wn C X, 8 W ' C X' defined in Section 2.1. Since F is planar these are tori. 
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First suppose that & Wn (say) is incompressible in X. Then M contains an 
incompressible torus which is disjoint from F. Also, d Wn compresses in 
W = T(WW; U n= 1Ci) (see the remark after the proof of Lemma 2.2.3) and hence 
in M(r). We thus obtain conclusion (ii). 

So we suppose that d_ Wn compresses in X (and that d- W,' compresses in 
X'). Since X is irreducible, _ Wn bounds a solid torus in X, implying that X is 
a handlebody of genus n. It is convenient to distinguish two cases: 

(1) n = 1. Here F is an annulus and X is a solid torus. Since F is essential 
in M = XUFX ', the image of H1(F) in H1(X), which coincides with the image 
of H1(Cl) in H1(X), has index k, say, where 1 < k < ox. Therefore X = T(X; C1) 
is a punctured lens space whose fundamental group has order k. 

(2) n > 1. Recall Lemma 2.1.2. By canceling the 2-handle corresponding to 
C1 with the disk E/), j= 1,..., n - 2, we see that X -2 is a handlebody of 
genus 2. Consider the disjoint simple loops Cn-1, Cn C dXn-2. Since the 
boundaries of the disks Enn-1) and E2n)1 are disjoint from C1,..., Cn2, we have 
Enn-1 n -1 C X-n2' Also, dEnn-1) (resp. dE$')2) intersects Cn-1 (resp. Cn) 
transversely in a single point. Application of Lemma 2.1.4 with k = n - 2 shows 
that dXn2 - Cn1 U Cn is incompressible in Xn-2. Lemma 2.3.2 now implies 
that X is a punctured lens space. 

Similarly (in both cases (1) and (2)), since d W,' is compressible in X', X' 
is also a punctured lens space, and we obtain conclusion (i) of the proposition. 

(b) The disconnected case. 
(1) n = 1. Here G is a disk and M is a solid torus, so that we have 

conclusion (iii). 
(2) n > 1. Recall from Section 2.1 that here X is a handlebody of genus 

n - 1. Also, the disks {EPi): j # i}, for 1 < i < n, given by Lemma 2.1.2, show 
that the set of loops { Cj: j # i } is primitive (in the sense of [Gr2]) for each i, 
1 < i < n. Therefore, by [Gr2, Proposition 2.1], (X, G) -(G X I, G X {O}). 
Recalling that (X', G) - (G x I, G x {0}) also, we see that M fibers over S1 
with fiber G. ?I 

We remark that as far as the Cyclic Surgery Theorem is concerned, the 
cases n = 1 of both (a) and (b) are actually excluded by the assumption that M 
is not Seifert fibered. However, as there is no need to exclude them in the 
statement of Proposition 2.3.1 or Theorem 2.0.3, we do not do so. 

2.4. Reduction and boundary reduction under Dehn surgery 

Throughout this section M will be an irreducible 3-manifold (not necessarily 
compact) with a torus boundary component T. If r is a slope on T, M(r) will 
denote the manifold obtained by attaching a solid torus to M along T so that the 
boundary of a meridian disk of the solid torus has slope r. Let S be a surface in 
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8 M - T which is incompressible in M. We are interested in the question of 
when S compresses in M(r). Note that the case in which S is a closed 
incompressible surface in int M can be reduced to the situation just described by 
cutting M along S. 

We make the following conjecture. 

Conjecture 2.4.1. If S compresses in M(rl) and M(r2) then A(rl, r2) < 1, 
unless M contains an incompressible annulus with one boundary component in S 
and the other in T. 

Examples showing the need to rule out annuli are provided by the cable 
spaces (see the remarks immediately following the statement of Theorem 2.4.4 
below). Examples (with S a torus) where S compresses in M(ri) for two slopes 
rl, r2 (with A(rl, r2) = 1) have been given by Berge (unpublished) and Gabai 
[Ga]. In fact an example is given in [Ga] where S compresses in M(ri) for three 
slopes rl, r2, r3 (with A(ri, rj) = 1, i # j). 

In the direction of Conjecture 2.4.1, we are able to prove the following. 

THEOREM 2.4.2. If S compresses in M(rl) and M(r2), then either 
(i) A(rl, r2) < 2; or 
(ii) M contains an annulus with one boundary component in S and the 

other having slope ro in T, where L(ro, ri) = 1, i = 1, 2; or 
(iii) M is homeomorphic to T X I. 

To complete the proof of Theorem 2.0.3, after Propositions 2.2.1 and 2.3.1, 
it would suffice to prove Conjecture 2.4.1. This can be achieved when S is a 
torus (see Theorem 2.4.4 below). In particular, this completes the proof of 
Theorem 2.0.3 when F is planar. In the non-planar case, the completion of the 
proof of Theorem 2.0.3 may be described as a modification of the proof of 
Theorem 2.4.2 which makes use of the special properties of the surface S that are 
described in Addendum 2.2.2. (Thus Theorem 2.4.2 itself is not used in the proof 
of the Cyclic Surgery Theorem, but we include it for its interest as a general 
result on the problem of when surfaces compress under Dehn surgery.) 

If conclusion (ii) of Theorem 2.4.2 holds, then it is possible to obtain more 
explicit information about the compressibility of S in M(r). This is described in 
the following theorem. 

THEOREM 2.4.3. Suppose that M contains an annulus with one boundary 
component in S and the other having slope ro in T. Then 

(a) S compresses in M(ro). 
(b) S is incompressible in M(r) if A(r, ro) > 1, unless M is homeomorphic 

to Tx I. 
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(c) If A(ri, ro) = 1, i = 1,2, then M(r1) -M(r2). In particular, S com- 
presses in M(r) for some r such that A(r, ro) = 1 if and only if it compresses in 
M(r) for all such r. 

To state the improvement that can be made to Theorem 2.4.2 when S is a 
torus, recall the definition of a cable space given in Section 2.0. 

THEOREM 2.4.4. If S is a torus which compresses in M(r1) and M(r2), then 
either 

(i) A(rl, r2) < 1; or 
(ii) M is a cable space; or 
(iii) M is homeomorphic to T X I. 

The examples mentioned above shows that this result is best possible. 
If M is a cable space, with boundary components S and T (since there is an 

automorphism of M interchanging S and T, the labeling is irrelevant), then in 
fact S compresses in M(r) for infinitely many slopes r. This is accounted for by 
the existence of an incompressible annulus in M connecting the two boundary 
components, as described in Theorem 2.4.3(c) (see [Gr-L, Remark on p. 125]). 
The cable spaces thus provide simple examples to illustrate Theorem 2.4.3 and to 
show the need to exclude annuli in the formulation of Conjecture 2.4.1. 

Another situation in which Theorem 2.4.2 can be improved is the following. 

THEOREM 2.4.5. If S1 and S2 are disjoint surfaces in 3M - T, each 
incompressible in M, such that Si compresses in M(ri), i = 1, 2, then 
A(rl, r2) < l. 

The above theorems can be regarded as restricting the boundary slopes in T 
of essential punctured disks in M. The next result deals with the analogous 
question for punctured spheres. 

THEOREM 2.4.6. If (Pi, dPi) C (M, T) is an essential planar surface with 
boundary slope ri, i = 1, 2, then either 

(i) (rl, r2) < 1; or 
(ii) M(rl) or M(r2) contains a lens space as a connected summand. 

An immediate corollary is the following. 

COROLLARY 2.4.7. If M(r1) and M(r2) are reducible, then either 
(i) (rl, r2) < 1; or 
(ii) M(rl) or M(r2) contains a lens space as a connected summand. 

Corollary 2.4.7 will be used to prove Theorem 2.0.2. 
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Theorem 2.4.6 and Corollary 2.4.7 may be compared with [Gr-L, Theorem 
1.1], where it is shown that the alternative conclusions (i) and (ii) can be 
replaced by the single conclusion that A(rl, r2) < 4. Probably none of these 
results is best possible. 

In Section 2.5 we shall show how the theorems stated above follow from 
certain graph-theoretic propositions; these in turn will be proved in Section 2.6. 

The remainder of this section is devoted to showing how Theorems 2.0.1 
and 2.0.2 follow quickly from Theorems 2.4.4 and 2.4.5, and Corollary 2.4.7, 
respectively. 

Proof of Theorem 2.0.1. Let S be an essential torus in int M which 
compresses in M(r) and M(s). Let M' be the component of the manifold 
obtained by cutting M along S that contains 3M. There are two cases. 

(1) S does not separate M. Then 3M' = S1 U S2 U 3M, where S1 and S2 
are copies of S. If some Si compresses in both M'(r) and M'(s), then Theorem 
2.4.4 implies that A(r, s) < 1. On the other hand, if S1 (say) compresses 
in M'(r) while S2 compresses in M'(s), then Theorem 2.4.5 implies that 
A(r, s) < 1. 

(2) S separates M. Then 3 M' = S U 3 M. If S compresses in M'(r) and 
M'(s), then by Theorem 2.4.4 either A(r, s) < 1 or M' is a cable space. 
(Conclusion (iii) of Theorem 2.4.4 is impossible since S is essential in M.) C] 

Proof of Theorem 2.0.2. Since dim H1(M; Q) > 1, we have that 
dim HI(M(r); Q) ? 1 for all slopes r. Hence M(r) is a Haken manifold unless it 
is reducible. By Corollary 2.4.7, M(r) and M(s) reducible implies that either 
A(r, s) < 1 or M(r) (say) contains a lens space as a connected summand. But 
the latter possibility is ruled out by the assumption that H1( M( r)) is cyclic. C] 

2.5. The basic graph-theoretic analysis of reduction and 
boundary reduction 

In this section we describe the basic machinery with which the theorems 
stated in Section 2.4 will be proved. In particular, we show how these theorems, 
and the remaining part of Theorem 2.0.3, follow from certain graph-theoretic 
propositions. 

Throughout, we shall use the indices a and /3 to denote 1 or 2, with the 
convention that, when they are used together, { a, /3 } = { 1, 2}. 

Let M and S be as described at the beginning of Section 2.4, and let Da' be 
a compressing disk for S in M(ra) = M U J,. We may assume that Da, meets the 
solid torus J, in a disjoint union of meridian disks of J,. (Note that Da n J, is 
necessarily non-empty since S is incompressible in M.) Then Pa = D n M is a 
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planar surface, with one outer boundary component aoPa = 8 DD, lying in S, and 
na,, say, inner boundary components ax Pa, x = 1, ..., r n, each having slope ra in 
T. We shall always assume that Pa is incompressible in M. This is guaranteed if 
Da is chosen so that na is minimal (for example, over all compressing disks for S 
in M(ra)), and we shall usually make this choice. On the one occasion when this 
may not be possible (this occurs for P1 in the final step of the proof of Theorem 
2.0.3), it will be easy to see that we may still assume that P1 is incompressible 
in M. 

By an isotopy of P2, say, we may assume that P1 and P2 meet in general 
position. Note that a0Pa meets no inner boundary component of Pa. Then 
P1 n P2 = /i ii &, where ,1 is a disjoint union of arcs with at least one 
endpoint in an inner boundary component of P.a, - is a disjoint union of arcs 
with both endpoints in a0Pa, and W is a disjoint union of simple closed curves. 
By a standard innermost disk argument, a further isotopy of P2 will ensure that 
no component of W bounds a disk in Pa since PA is incompressible and M is 
irreducible. Finally, again by an isotopy of P2, say, we may assume that each 
inner boundary component of Pa meets each inner boundary of PA in A= 

A(rl, r2) points. In fact, if the inner boundary components of P. are numbered 
Q1P Pd,... 3 so that they are consecutive on T, then going round each inner 

boundary component of Pa (in some direction) the indices of the inner boundary 
components of PA that we encounter are, in order, 1,..., n,... ,1,.. ., rn 
(repeated A times). 

A graph in a disk D will consist of a finite number of vertices in int D, 
together with a finite number of edges. Each edge either connects a vertex to a 
(possibly non-distinct) vertex, or connects a vertex to AD. The former are 
interior edges, the latter, boundary edges. We assume that the endpoints on AD 
of all boundary edges are distinct. 

Let Fa be the graph in the disk Da obtained by taking the union of '1 with 
the cone (in the corresponding meridian disk of Ja) on Qln axPa for each inner 
boundary component axPa of P.. Thus the vertices x of Fa are in one-to-one 
correspondence with the inner boundary components axPa of Pa and the edges 
of Fa are in one-to-one correspondence with the components of -S. Note that 
each vertex has valency Art8. Let e be an edge of Fa, with one of its endpoints 
the vertex x, say. Then e corresponds to an arc in ,1 with one endpoint on 
axPa which is a point of intersection of axPa with some inner boundary 
component dyp say, of Pa. We say that e has label y at x. In this way, each 
incidence of an edge of Fa at a vertex of Fa is labeled with a vertex of F.o 

Two vertices of Fa are parallel if the corresponding inner boundary 
components of Pa when given the orientation induced by some orientation of 
P., are homologous in T. Otherwise, they are antiparallel. 
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Since all our manifolds are orientable, each arc in P1 n P2 must join points 
of intersection of dP1 with dP2 of opposite sign. Thus we have the following 
parity rule: 

If e is an interior edge of ra connecting parallel (resp. antiparallel) vertices 
of F., then the labels at the endpoints of e represent antiparallel (resp. parallel) 
vertices of F1i. 

Although in general the edges of our graphs are unoriented, it will some- 
times be convenient to temporarily orient an edge e. Then a+e and a_ e will 
denote the head and tail endpoints of e respectively. 

A cycle in Fa is a subgraph homeomorphic to a circle. Equivalently, a cycle 
is a subgraph consisting of interior edges eo, . . ., eke, k ? 1, which may be 
oriented so that a+ ei = a -ei + i E Zk, and so that the vertices 3+ ei, i E Zk, 
are distinct. We call k the length of the cycle. 

Let x be a vertex of Fa. An x-cycle in F13 is a cycle a such that 
(a) all the vertices of a are parallel, and 
(b) for some consistent orientation of the edges in a, each edge e has label 

x at ade. 
A Scharlemann cycle in F13 is an x-cycle a (for some vertex x of F.) such 

that the interior of the disk in DA8 bounded by a is disjoint from rig. (The 
terminology is explained by the remark preceding Lemma 2.5.2 below.) 

It follows easily from the definition that if the edges of a Scharlemann cycle 
in F1 are oriented consistently, then each edge e has label x at a_ e and label xi 
at d+e, where x and x- are antiparallel and represent inner boundary compo- 
nents of Pa which are adjacent on T. (See Figure 2.1.) 

xX 

x x 

FIcGUR 2.1 

A Scharlemann cycle of length 1 will be called a trivial loop. 
The next three lemmas are concerned with the topological interpretation of 

certain properties of the graphs F1 and F2. 

LEMMA 2.5.1. Fa contains no trivial loop. 
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Proof: A trivial loop in ra gives rise to a boundary-compression of PA 
towards T. It is easy to show that this implies that PA is compressible. F] 

Parts (a) and (b) of the next lemma are essentially contained in [Sch2, proof 
of Proposition 4.7] and [Sch3, proof of Proposition 5.6] respectively. We include 
the proofs for the convenience of the reader. 

LEMMA 2.5.2. Suppose that F. contains a Scharlemann cycle. Then: 
(a) There exists a compressing disk D' for S in M(ra) with AD' = aDa, 

such that the corresponding planar surface P' in M has two fewer inner 
boundary components than POa; and 

(b) M(ra) has a lens space as a connected summand. 

Proof. Let a be a Scharlemann cycle in Fr.i Then the length of a, say k, is 
greater than 1 by Lemma 2.5.1. 

(a) a gives rise to a disk E C PA whose boundary is the union of consecu- 
tive arcs a0, bo ..,ak-l, bk-l, where the ai are in P1 n P2 and correspond to 
the edges of a, and the bi are in the inner boundary components of PA 
corresponding to the vertices of a. (See Figure 2.2.) Note that int E n P, = 0. 
The labels at the endpoints of the edges of a represent inner boundary 
components of Pa which are adjacent on T. These boundary components 
cobound an annulus A in T containing all the bi. Let Q, be the punctured torus 
Pa U A, pushed slightly into int M, and let P' be Q, surgered along E. Since dE 
has algebraic (and geometric) intersection number k with a core of A, P' is a 
planar surface with 00P' = 00Pa and with two fewer inner boundary compo- 
nents than Pa. 

ai ai+ 

E bit 

FIGuRE 2.2 

(b) Consider the disk Da, c M(ra) = M U JO The inner boundary compo- 
nents of Pa represented by the labels at the endpoints of the edges of a bound 
meridian disks D, D, say, in JO. Since these boundary components are antiparal- 
lel in T, the union of the 3-cell in J'a bounded by D U A U D with a suitable 
regular neighborhood of Da, (pushed slightly off S) will be a solid torus V in 
int M(rn). Then dE c aV, and there is a regular neighborhood N(E) of E such 
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that V U N(E) is a punctured lens space in M(rT) whose fundamental group has 
order k. E] 

Remark. Usually we may assume without loss of generality that the disk Da 
is chosen so that the number na of inner boundary components of P.> is minimal. 
Then by Lemma 2.5.2(a), the existence of a Scharlemann cycle in F,8 simply 
leads to a contradiction. One exception, however, occurs in the final step of the 
proof of Theorem 2.0.3. There the set-up is more complicated, and in particular 
it is not clear that we may assume that the number of inner boundary compo- 
nents of P1 is minimal while still maintaining the other hypotheses. In that case 
we use Lemma 2.5.2(b) instead. 

Two edges e, e' of Fa are parallel if the corresponding arcs a, a' in 
P1 n P2 are parallel in Pay that is, there exists a disk E in P, such that 

E= a u b U a' u b', where b, b' are arcs in dPa. (Note that E n Pf may 
contain arcs other than a and a'.) 

The next lemma is essentially contained in [Sho]. Recall that A = A(rl, r2). 

LEMMA 2.5.3. Suppose that Pa is an annulus. Then either A < 1 or M is 
homeomorphic to T x I. 

Proof Since Pa is an annulus, all the edges of ra, and hence of 7,3, are 
boundary edges (by Lemma 2.5.1). Suppose that A > 2. Then by a simple 
outermost arc argument, there is a vertex y of F, such that two adjacent 
(boundary) edges of F,8 containing y are parallel. Let the corresponding arcs in 
P1 n P2 be a and a'. Then, for i = 1,2, there are arcs di C 3Di, bi c d9P, - 
dDi, and disks Ei C Pi such that dEi = a u bi U a' u di. Note that E1 n E2 
- a U a' consists of arcs which are parallel into both dI and d2. These are 
easily removed, for example by an isotopy of E2 (using the incompressibility of S 
in M and the irreducibility of M). Then A = E1 U E2 is an annulus in M with 
one boundary component in S and the other, b1 U b2 = doA, say, in T. Since 
int bfl n dP,, = 0, we see that doA has slope ro, say, where A(ro, r,) = 1 (see 
Figure 2.3). Hence, after an isotopy of A, A n Pa will consist of a single 
spanning arc.Thus A U Pa is homeomorphic to X x I, where X = X x {0} is 

FIcuRE 2.3 
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the union of two simple loops in T which intersect transversely in a single point, 
and has a regular neighborhood homeomorphic to N X I where N = N X {o} is 
a regular neighborhood of X in T. Since AN = AN x {o} bounds a disk Bo in T 
and S is incompressible in M, dN x { 1} bounds a disk B1 in S. Then 
Bo u AN X I U B1 is a 2-sphere, which bounds a 3-ball B in M since M is 
irreducible. Then N X I U B -T X I, showing that M _ T X I. El 

LEMMA 2.5.4. Suppose that Fa contains boundary edges which are parallel 
in both Fl and F2. Then either M contains an annulus with one boundary 
component in S and the other having slope ro in T. where A(r0, ri) = 1, i = 1, 2, 
or M is homeomorphic to T x I. 

Proof. Let the arcs in P1 n P2 corresponding to the edges that are parallel 
in F1 and F2 be a and a'. Then, for i = 1,2, there are arcs di c aDi, 
bic aPi - aDi, and disks Ei C Pisuch that aEi = a U bi U a' U di. By possi- 
bly rechoosing a' and performing an isotopy of E2 (say), we may assume that 
intEl n int E2 = 0. Then A = E1 U E2 is an annulus in M with one boundary 
component in S and the other, b1 u b2 = aAoA say, in T. By moving a0A 
slightly into general position with respect to the component of aPi containing bi, 
we see that d0A has slope ro in T where A(r0, ri) > 0, i = 1,2. Now apply 
Lemma 2.5.3 with A replacing Pa in the statement of that lemma. We conclude 
that either M_ TX I orA(ro, ri) = 1, i = 1,2. Eli 

We shall usually use Lemma 2.5.4 in conjunction with the following 
observation. 

LEMMA 2.5.5. Suppose that Fa contains a family of 2n1 mutually parallel 
boundary edges. Then ,a contains boundary edges which are parallel in both F, 
and r2. 

Proof: The edges in the parallel family may be numbered e(1),..., 
e(np), e'(1),..., e'(n8) so that e(y) and e'(y) have label y (at their vertex 
endpoint). Thus e(y) and e'(y) correspond to boundary edges in rA with vertex 
endpoint y; let the union of these boundary edges be f(y). Then fly) is a 
properly embedded arc in DA containing the vertex y. Let yo be a vertex such 
that f(yo) is an outermost such arc. Then the edges e( y) and e'(yo) are parallel 
in both Fl and 2 EI 

We now state the main graph-theoretic propositions on which the proof of 
the theorems in Section 2.4 and the proof of conclusion (iii) of Theorem 2.0.3 
will be based. These propositions will be proved in Section 2.6. 
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PROPOSITION 2.5.6. Suppose that A ? 2. Then either 
(i) rF or F2 contains a Scharlemann cycle; or 
(ii) every vertex of ra belongs to a boundary edge of ray 

Addendum 2.5.7. In conclusion (ii) of Proposition 2.5.6, every vertex x of 
ra belongs to a boundary edge e(x) of ra such that the vertices of 1/ in the set 

{ label of e(x) at x: x a vertex of T'a} are all parallel. 
PROPOSITION 2.5.8. Suppose that A ? 3. Then either 
(i) F, or r2 contains a Scharlemann cycle; or 
(ii) there exists a pair of boundary edges which are parallel in both 

rF and r2i 

To complete the proof of Theorem 2.0.3 we need to make use of some 
additional structure. Thus, for the next proposition we assume that there is an 
essential surface (F, aF) C (M, T) with aF # 0 and having boundary slope rl, 
and that the compressing disk D1 for S in M(rl) is disjoint from F. We may 
assume that P1 is incompressible in M - F, for example, by choosing D1 so that 
ni is minimal among all compressing disks for S in M - F. Since F is 
incompressible in M, this implies that P1 is also incompressible in M. 

PROPOSITION 2.5.9. Suppose that A ? 2. Then either 
(i) IF, contains a Scharlemann cycle; or 
(ii) "2 contains a Scharlemann cycle; or 
(iii) all the inner boundary components of P1 lie in a single component of 

T- dF. 

This proposition will be used to establish conclusion (iii) of Theorem 2.0.3. 
Its proof is a modification of the proof of Proposition 2.5.8. 

In the remainder of this section we show how Theorems 2.4.2-2.4.6, and 
the rest of Theorem 2.0.3 (together with Addendum 2.0.4), follow from the 
above graph-theoretic propositions. 

Proof of Theorem 2.4.2. We may assume that nf is minimal over all 
compressing disks for S in M(rO). The theorem then follows immediately from 
Proposition 2.5.8, Lemma 2.5.2(a), and Lemma 2.5.4. E 

Proof of Theorem 2.4.3. By hypothesis, M contains an annulus AO with one 
boundary component in S and the other having slope ro in T. 

(a) AO gives rise to a compressing disk for S in M(ro). 
(b) This follows immediately from Lemma 2.5.3. 
(c) Let t: M -* M be the homeomorphism defined by Dehn twisting 

(in some direction) along AO, If A(ri, ro) = 1,i = 1, 2, then, for some integer k, 
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tk takes the slope r1 to r2. It therefore extends to a homeomorphism from M(r1) 
to M(r2). 

Proof of Theorem 2.4.4. Suppose that A> 2, and that Dd, is chosen so that 
n. is minimal. By Proposition 2.5.6, Addendum 2.5.7, and Lemma 2.5.2(a), each 
vertex x of F. is an endpoint of a boundary edge e(x) of F. such that the labels 
of the edges e(x) at the corresponding vertices x represent parallel vertices of 
F,,. Since S is a torus, we may also assume that all the intersections of 3D1 with 
3D2 have the same sign. By the same reasoning as that which led to the parity 
rule, these together imply that the vertices of F. are all parallel; similarly, the 
vertices of F' are all parallel. By the parity rule, this implies that F., contains no 
interior edges. By a straightforward outermost arc argument, there exists a vertex 
x of F., such that all the (boundary) edges of F., incident to x are parallel. Since 
A ? 2, Lemmas 2.5.4 and 2.5.5 imply that either M is homeomorphic to T X I 
or there is an annulus A in M with one boundary component, say 01A, in S, and 
the other, say doA, having slope ro in T, where A(ro, ri) = 1, i = 1, 2. 

Let K be a core of the solid torus J, where M(r1) = M U J. Since 
A(rP, ro) = 1, a meridian disk of J meets doA in one point. Hence A can be 
extended to an annulus B such that dB = d1A U K, which can be used to 
isotope K into S. Now let : be a 2-sphere in M(rj). By the previous sentence, an 
isotopy of : in M(rj) will move it off K, and hence into M, where it bounds a 
3-ball. This shows that M(rj) is irreducible. Therefore, since S compresses in 
M(r1) by hypothesis, M(r1) is a solid torus with boundary S. Thus M is the 
complement of an open regular neighborhood of a curve, K, in a solid torus 
which can be isotoped to an essential curve in the boundary of the solid torus. It 
follows that M is either a cable space or homeomorphic to T x I. El 

Proof of Theorem 2.4.5. Let D. be a compressing disk for S . in M(r.) with 
n.c minimal. Since S1 n S2 = 0, the graph F., contains no boundary edges. The 
result now follows from Proposition 2.5.6 and Lemma 2.5.2(a). El 

Proof of Theorem 2.4.6. Here the arcs in P1 n P2 give rise to graphs F1, F2 
in 2-spheres 2 12. 2Al the remarks made at the beginning of this section apply, 
mutatis mutandis, to F1 and '2. Hence, formally removing an open disk from 
2i -F, i = 1,2, we obtain two graphs in disks with no boundary edges, to 
which we may apply Proposition 2.5.6. We conclude that either A(r1, r2) < 1 or 
there is a Scharlemann cycle in F1 or J2. It is easy to see that Lemma 2.5.1 still 
applies, since P1 and P2 are essential in M, so that any Scharlemann cycle in F1 
or '2 has length greater than 1. But if F. contains such a Scharlemann cycle, 
then an argument entirely analogous to the proof of Lemma 2.5.2(b) shows that 
M(r.) contains a lens space as a connected summand. El 
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Remark. Although a Scharlemann cycle in r, can also be used to construct 
a new planar surface P' with two fewer boundary components, as in Lemma 
2.5.2(a), there is now no guarantee that P' is essential. 

Proof of Theorem 2.0.3. There are two cases. 
(1) F is non-planar. By Proposition 2.2.1, either conclusion (i) of Theorem 

2.0.3 holds or M contains a closed incompressible surface S which is disjoint 
from F. Moreover, S has the additional properties described in Addendum 2.2.2. 

If condition (i) of Addendum 2.2.2 holds, then S remains incompressible in 
M(s) whenever A(r, s) > 1 by Theorem 2.4.3(b). (Note that S is not parallel to 
3M, for example since it is disjoint from F.) This is conclusion (iii) of Theorem 
2.0.3. 

So suppose that S satisfies condition (ii) of Addendum 2.2.2. Write r1 = r 
and let D1 be a compressing disk for S in N(rl) which misses F, as guaranteed 
by (ii)(b) of Addendum 2.2.2. By the remark immediately preceding the state- 
ment of Proposition 2.5.9, we may assume that the corresponding punctured disk 
P1 is incompressible in M. Suppose that S also compresses in M(r2), and 
therefore in N(r2), for some slope r2. Let D2 be a compressing disk for S in 
N(r2), such that the number of inner boundary components of the corresponding 
planar surface P2 is minimal. Let F,, F2 be the graphs in D1, D2 obtained in the 
usual way. Now apply Proposition 2.5.9. Conclusion (i) of that proposition 
contradicts the minimality of the number of inner boundary components of P2, 
by Lemma 2.5.2(a). Conclusion (ii) contradicts condition (ii)(a) of Addendum 
2.2.2, in view of Lemma 2.5.2(b). Finally, conclusion (iii) contradicts condition 
(ii)(c) of Addendum 2.2.2. We must therefore have A(r1, r2) < 1, and thus obtain 
conclusion (iii) of Theorem 2.0.3. 

We point out that in the above proof we are not able to use the existence of 
a Scharlemann cycle in J2 to reduce the number of inner boundary components 
of P1, as this might destroy the condition P1 n F = 0 which is crucial for the 
proof of Proposition 2.5.9. 

(2) F is planar. First suppose that F is connected. Then by Proposition 
2.3.1, either conclusion (ii) of Theorem 2.0.3 holds or M contains an incom- 
pressible torus S which is disjoint from F and compresses in M(r). Therefore, by 
Theorem 2.0.1, either S remains incompressible in M(s) if A(r, s) > 1 (and we 
have conclusion (iii) of Theorem 2.0.3), or S and 3M cobound a cable space. If 
the latter holds, then in particular there is an annulus A in M with one 
boundary component in S and the other having slope r0, say, in T. Now consider 
A n F. Since F n S = 0 and F is essential in M, a standard outermost arc 
argument shows that we must have ro = r. Then again we obtain conclusion (iii) 
of Theorem 2.0.3, by Theorem 2.4.3(b). 
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If F is disconnected then, by Proposition 2.3.1(iii), M fibers over S' with 
fiber G, and we have conclusion (iv) of Theorem 2.0.3. El 

Before giving the proof of Addendum 2.0.4, we need the following lemma. 

LEMMA 2.5.10. Let M be a 3-manifold which fibers over S' with fiber a 
connected surface, and let F be an essential connected surface in M. If either 

(a) F is disjoint from some fiber; or 
(b) F is planar and dF is disjoint from some fiber, 

then F is isotopic to a fiber. 

Proof (a) Let H be a fiber such that F n H = 0. Then F is a connected 
incompressible surface in H X I (that is, M cut along H) such that F n H X AI 
= 0. But it follows easily from [Wal, Proposition 3.1] that any such surface is 
either a boundary-parallel annulus or parallel to H X {o}. 

(b) Move F into general position with respect to some fiber H, keeping 
aF n H = 0. Thus F n H consists of disjoint simple loops; let C be one that is 
innermost on F (which is planar by hypothesis), and let F0 be the corresponding 
innermost component of F cut along C. Then, when we cut M along H, F0 is an 
incompressible surface in H X I with MOF contained in (say) H X {0} U AH X I 
and MFO n H x {0} =: 0. Again by [Wal, Proposition 3.1] any such surface is 
parallel to a subsurface of H x { 0}, and so we may perform an isotopy of F to 
reduce the number of components of F n H. Continuing in this way, we 
eventually move F off H, at which point we apply part (a). El 

Proof of Addendum 2.0.4. Let P be a fiber. We work with a surface 
satisfying the following slight modification of the definition given in Section 2.1. 
Let (F, aF) C (M, 3M) be an essential separating surface with boundary slope 
r, such that each component of F has non-empty boundary and is not isotopic to 
P, and such that the number of components of dF is minimal subject to these 
conditions. Since r is a strict boundary slope by hypothesis, there exists such a 
surface F. In addition, we assume (as we may) that if F is disconnected then it 
consists of two parallel copies of some connected non-separating surface. Note 
that by Lemma 2.5.10(b), F is not planar. 

Recall the definition of Fj from Section 2.1. Our minimality assumption on 
F here implies that each component of Fj is either closed, or a boundary-paral- 
lel annulus, or non-separating, and that if there are any non-separating compo- 
nents, then at least one of them is isotopic to P. On the other hand, if Ft. did 
have a component isotopic to P, then, since by a small isotopy we can make 
F n F7- = 0, F would consist of copies of P by Lemma 2.5.10(a). We conclude 
that Fi- consists of boundary-parallel annuli together with a closed surface. 

The proofs of Proposition 2.2.1 and Addendum 2.2.2 then apply verbatim to 
this surface F. Since M(r) is homeomorphic to SI x S2, conclusion (i) of 

This content downloaded from 128.248.155.225 on Sun, 4 Jan 2015 21:37:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


DEHN SURGERY ON KNOTS 287 

Proposition 2.2.1 does not hold; so we have conclusion (ii), together with 
Addendum 2.2.2. The proof of the relevant part of Theorem 2.0.3 (case (1) 
above) now applies to give conclusion (iii) of that theorem. D 

2.6. The combinatorics of graphs in disks 

This section is graph-theoretic in nature. In it we assume that we are given 
graphs FY, J2 in disks D1, D2 as described in Section 2.5, and our goal is to 
prove Propositions 2.5.6 (including Addendum 2.5.7), 2.5.8, and 2.5.9. 

The search for Scharlemann cycles is facilitated by consideration of the 
following more general type of cycle (see Lemma 2.6.2 below). 

A great cycle (specifically, a great x-cycle) in r is an x-cycle a such that all 
the vertices of Fr that lie in the (closed) disk in D,, bounded by a are parallel. 

Let A be a subgraph of T,', and let x be a vertex of ran We say that A 
satisfies condition P(x) if: 

For each vertex y of A there exists an edge of A incident to y with label x, 
connecting y to a parallel vertex of A. 

LEMMA 2.6.1. Suppose that A satisfies condition P(x). Then each compo- 
nent of A contains an x-cycle. 

Proof. For each vertex y of A, choose an edge e(y) of A incident to y with 
label x, connecting y to a parallel vertex of A. 

Let A0 be a component of A, and let y1 be any vertex of AO. Consider the 
edge e(y1), connecting Y1 to Y2' say. Since y1 and Y2 are parallel, the label of 
e(yl) at Y2 is not x, by the parity rule. Hence if Y2 $ Y1, the edge e(y2) is 
distinct from e(yl). Continue in this way, obtaining edges e(yi) connecting 
vertices yi and yj ,? with label x at yi, until a vertex is repeated for the first 
time, say Ym = Yn, m < n, but yi $ yj for 1 < i < j < n. Then the edges 
e( ym), * * , e( Yn- 1) form an x-cycle in AO. El 

LEMMA 2.6.2. If J, contains a great cycle, then it contains a Scharlemann 
cycle. 

Proof Let a be a great x-cycle in r,,, for some vertex x of 1f, and let E be 
the disk in D~, bounded by a. Let Ec(a) be the number of edges e in F, such that 
int e C int E. We prove the result by induction on ec(a). 

If c(a) = 0, then a is a Scharlemann cycle by definition. So suppose that 
c(a) > 0. We distinguish two cases: 

(1) Any edge in f n E incident to a vertex of a lies in a. 

Since all the vertices of J, f E are parallel, the graph A = Jr E E-a 

satisfies P(x') for any vertex x' of J,,f, and hence contains an x'-cycle a' by 
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Lemma 2.6.1. Clearly a' is a great x'-cycle in Ffl and ec(a') < c(a). Hence the 
result follows by induction. 

(2) There exists an edge of T', n E incident to a vertex of a but not 
contained in a. 

Since all the vertices of a are parallel, there is a label x' such that x and x' 
represent inner boundary components of Pd, which are adjacent in T, with the 
property that for every vertex y of a there is an edge of T', n E incident to y 
with label x'. This is also (trivially) true for any vertex y in int E. Hence f, n E 
satisfies condition P(x'). An application of Lemma 2.6.1 would now give an 
x '-cycle a' in f, n E; however, we want to avoid the possibility that a' = a. To 
do this, note that since by hypothesis there exists an edge of T', n E incident to 
a vertex of a but not contained in a, there exists such an edge incident to a 
vertex y, say, in a with label x'. Let e be the edge of a which, when oriented so 
that it has label x at 3- e, has d9e = y. Then the graph A = r - int e 
also satisfies condition P(x'). By Lemma 2.6.1 we obtain an x'-cycle a' in A, 
which is clearly a great x'-cycle in r with c( a') < c( a). Then T,' contains a 
Scharlemann cycle by induction. El 

Let A be a graph in a disk D, and choose a point x e 3D - A. We may 
then define a partial ordering on the set of components of A by declaring that 
A1 < A2 if and only if every path in D from A1 to x meets A2. Call a 
component of A extremal if it is minimal with respect to this partial ordering for 
some choice of xc. 

To prove Proposition 2.5.6 we focus on the following condition: 
(*) There exists a vertex x of Fa such that for each vertex y of F', there is 

an edge of Fa incident to x with label y, connecting x to an antiparallel vertex 
of Fey 

LEMMA 2.6.3. Suppose that condition (*)a holds. Then F'? contains a great 
x-cycle. 

Proof: By the parity rule, the hypothesis (*)a is equivalent to the condition 
that there exists a vertex x of F., such that for each vertex y of F}? there is an 
edge e(y) of F'? incident to y with label x, connecting y to a parallel vertex of 
J,. For each vertex y of FJ, choose such an edge e(y), and let A be the 
subgraph of Ffl consisting of all these edges e(y). Then A satisfies condition 
P(x). Note also that each component of A has all its vertices parallel. 

Let AO be an extremal component of A. By Lemma 2.6.1, AO contains an 
x-cycle a. Since A0 is extremal, all vertices of J, in the disk bounded by a 
belong to A0; in particular, they are parallel. Hence a is a great x-cycle. El 
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The negation of condition (*)a is: 

(**) For each vertex x of ra there exists a vertex y(x) of J, such that 
each edge of Fa incident to x with label y(x) connects x either to a parallel 
vertex of ra or to daDam 

LEMMA 2.6.4. Suppose that AE > 2 and that condition (**)a holds. Then 
either 

(i) ra contains a great cycle; or 
(ii) every vertex of J7; belongs to a boundary edge of T'?. 

Proof. For each vertex x of ra choose a vertex y(x) of T', as in condition 
(**),, and define the subgraph A of Fa to be the union over all vertices x of Fa 
of { edges of ra incident to x with label y(x)}. Note that each vertex of A has 
valency ? A ? 2. Also, each component of A has all its vertices parallel. 

Let A 0 be an extremal component of A with respect to some point 
xc DA -A. Let R be the component of Da -A0 containing xc. The 
frontier FrR of R can be expressed as the union of a sequence of oriented edges 
el, . . ., en of AO, with d+e = dK ei+1, 1 < i < n-i, such that as we traverse 
these edges in order, the component of Da - A0 immediately on (say) our left is 
always R. (As oriented edges, el,..., en are distinct, although as unoriented 
edges there may be repetitions. Note however that, since each vertex of A0 has 
valency at least 2, consecutive edges in the sequence are distinct as unoriented 
edges.) 

Recall from Section 2.5 the definition of a cycle. We distinguish two cases: 
(1) The sequence el,..., en contains a cycle. 
Note that this is necessarily the case if AO C int Da. 

Let the cycle be a, with edges fo = em, ..., fk-1 = em+k-l say; so d9f = 
3Jti~1, i E Zk. Let xi be the vertex dKf, i Zk. Let E be the disk in Da 
bounded by a. (See Figure 2.4.) 

\ fog Nf 

E 

FiGuRE 2.4 
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Observe that, except possibly for i = 0, as we encircle the vertex xi in the 
clockwise direction, the edges of Jat incident to xi between f -1 and f have 
their interiors in R. while the remaining edges of Y,, incident to xi lie in E. (See 
Figure 2.5.) Furthermore, since by the definition of A there are edges of A0 
incident to xi at least at each of the A occurrences of the label y(xi), there are at 
most n. - 1 incidences of edges in the interior of R between f7-1 and fi. It 
follows that if i # 0, then for each vertex y of J,, there is an edge of ra n E 
incident to xi with label y. This is also (trivially) true for any vertex in int E. 

R 

E 

FiGuRE 2.5 

Since A 0 is extremal, all vertices of ,a n E are in A0, and hence are 
parallel. Let y0 be the label at x0 of any edge in T', n E incident to x0 (for 
example, f0). Then a, n E satisfies condition P(y0). By Lemma 2.6.1, ra n E 
contains a yo-cycle. Since all vertices of F. n E are parallel, this is necessarily a 
great yo-cycle, giving conclusion (i). 

(2) The sequence el,..., en does not contain a cycle. 
Then FrR is an arc in A0 with its endpoints in 8D.. Let E be the disk 

Da - R. (See Figure 2.6.) As in case (1) above, for every vertex x in FrR and 
every vertex y of F7, there is an edge of IF, n E incident to x with label y. 

Suppose that conclusion (ii) does not hold, so that there is a vertex y0 of FR 
which does not lie in any boundary edge of F'?. Then any edge of F., incident to 

FiGuRE 2.6 
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any vertex with label y0 is an interior edge. Since A0 is extremal, all vertices of 
ra n E are in A0, and hence are parallel. Therefore ,a n E satisfies condition 
P(y0). By Lemma 2.6.1, ra n E contains a y0-cycle, which is necessarily a great 
yo-cycle since all vertices of ,a n E are parallel. Thus we have conclusion (i). W 

Remark. In the last paragraph of the above proof, we only used the fact 
that there was a vertex y0 of Ff such that any edge of ,a n E (as opposed to 
any edge of F,) incident to any vertex with label y0 was an interior edge. Since 
all the vertices of ,a n E are parallel, conclusion (ii) of Lemma 2.6.4 may 
therefore be strengthened to say that every vertex y of r: is an endpoint of a 
boundary edge e(y) of r: such that the vertices of ra in the set {label of e(y) at 
y: y a vertex of F, } are all parallel. 

We can now prove Proposition 2.5.6 and Addendum 2.5.7. 

Proof of Proposition 2.5.6. This follows immediately from Lemmas 2.6.2, 
2.6.3 and 2.6.4. ? 

Proof of Addendum 2.5.7. This follows from the remark after the proof of 
Lemma 2.6.4. 0 

The following lemma will be needed in the proofs of Propositions 2.5.8 and 
2.5.9. 

LEMMA 2.6.5. Let F be a graph in a disk D with no trivial loops or parallel 
edges, such that every vertex of F belongs to a boundary edge. Then F has a 
vertex of valency at most 3 which belongs to a single boundary edge. 

Thus F has a vertex of one of the types illustrated in Figure 2.7 (which 
shows all the edges of F incident to the vertex). 

FIGURE 2.7 

Proof. For the purposes of this proof only, let us call vertices x, x' of F 
adjacent if there exist edges d, d' of F connecting x, x' to 3D such that 
d n 3D and d' n dD are adjacent on 3D among all points of F n 3D. 

Let the number of vertices of F be n. The lemma is clearly true if n < 3. 
For n > 4 we will prove the following stronger assertion by induction on n: 
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(*) There exist two non-adjacent vertices of valency at most 3, each 
belonging to a single boundary edge. 

So suppose n > 4 and assume that (*) is true for graphs with m vertices, 
4 < m < n. We consider three cases: 

(1) There is an edge of F connecting non-adjacent vertices. 
Let e be such an edge connecting x and x', say. Let d, d' be edges connecting 
x, x' to AD. (See Figure 2.8.) Let D1, D2 be the closures of the components of 
D - d U e U d', and consider the graphs Fi = F n Di in D, i = 1, 2. Suppose 
Ji has ni vertices. Since x, x' are not adjacent in F, we must have ni > 3, 
i = 1, 2, or equivalently ni < n, i = 1, 2. Note that x, x' are adjacent in Fi. We 
claim that there exists a vertex yi of Fi of valency at most 3 which belongs to a 
single boundary edge of Fi, with yi # x or x'. If ni > 4, this follows from the 
inductive hypothesis applied to Fi. If ni = 3, then take yi to be the vertex of Fi 
not equal to x or x'. Now Y1, Y2 are non-adjacent vertices of F of valency at 
most 3, each belonging to a single boundary edge. 

d 

x 

e 

xi 

FIGURE 2.8 

(2) There is a vertex of F which belongs to two distinct boundary edges. 
Let x be such a vertex, contained in boundary edges d, d', say. (See Figure 

2.9.) Let D1, D2 be the closures of the components of D - d u d', and consider 

d 

FIGuRBE 2.9 
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the graphs Ji = F n Di in D, i = 1, 2. Suppose that Fi has ni vertices. Since d 
and d' are not parallel in F, we must have ni > 2, i = 1,2, or equivalently 
ni <n, i= 1, 2. We claim that there exists a vertex yi of Fi of valency at most 
3, which belongs to a single boundary edge of Fi, with yi # x. If ni 2 4, this 
follows from the inductive hypothesis applied to the graph Fi obtained from Fi 
by amalgamating the parallel edges d, d'. If ni = 2 or 3, then the claim is easily 
verified by inspection. Now Y1I Y2 satisfy (*) for F. 

(3) Neither (1) nor (2) holds. 
Then every vertex belongs to a single boundary edge, and is connected to at 

most two vertices (since they must be adjacent to it). Thus any two non-adjacent 
vertices satisfy ( *). ? 

LEMMA 2.6.6. If Fa contains a parallel family of edges connecting parallel 
vertices, then either the sets of labels at the two ends of the family are disjoint, 
or Fa contains a Scharlemann cycle. 

The following corollary is immediate. 

COROLLARY 2.6.7. If Fa contains a parallel family of more than nft/2 edges 
connecting parallel vertices, then Fa contains a Scharlemann cycle. 

Proof of Lemma 2.6.6. Assume that the sets of labels at the two ends of the 
parallel family are not disjoint, and let y be a vertex of Fft which appears in both 
sets. Since no edge in the family can have label y at both ends by the parity rule, 
we see that the family contains a y-cycle a of length 2. Since there are no 
vertices in the interior of the disk that a bounds, a is a great y-cycle. Now apply 
Lemma 2.6.2 to conclude that Fa contains a Scharlemann cycle. 

LEMMA 2.6.8. If Fa contains a parallel family of nft edges connecting 
antiparallel vertices, then Ff contains a Scharlemann cycle. 

Proof This follows immediately from Lemmas 2.6.3 and 2.6.2. 0 

Proof of Proposition 2.5.8. By Proposition 2.5.6 we may assume that each 
vertex of Fa belongs to a boundary edge. Let Fa be the reduced graph 
corresponding to Fa' obtained by amalgamating all mutually parallel edges in the 
obvious way. Applying Lemma 2.6.5 to Fa, we conclude that Fa has a vertex x 
of one of the forms illustrated in Figure 2.10. 
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Type I Type II Type III 

FIGURE 2.10 

We treat these separately. 
Type I. In this case ra contains An,, ? 3n, parallel boundary edges, giving 

a pair of boundary edges which are parallel in both F1 and F2 by Lemma 2.5.5. 

Type II. Since A > 3, there must be either at least nft parallel edges 
connecting x to y, or at least 2nf parallel edges connecting x to dDa, In the first 
case, we obtain a Scharlemann cycle in F1 or F2 by Corollary 2.6.7 and Lemma 
2.6.8, and in the second case we obtain a pair of boundary edges which are 
parallel in both F1 and "2 by Lemma 2.5.5. 

Type III. Let U, V, W be the sets of labels around x corresponding to the 
edges connecting x to u, v and dDa, respectively. (See Figure 2.11.)We denote 
by I UI the number of labels (counted with multiplicity) in U, etc. Then 
IUI ? lvI + I WI = An ? 33nf. There are three sub-cases: 

(1) u, v and x parallel. By Corollary 2.6.7, either ra contains a Scharle- 
mann cycle or IUI < (1/2)nft, IVI < (1/2)n.. But then IWI ? 2nft, giving a 
pair of boundary edges which are parallel in both F1 and F2. 

U\ V 

w 

wI~E .1 
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(2) u, v parallel, antiparallel to x. If I WI 2 2nft, we obtain a pair of 
boundary edges which are parallel in both F1 and F2. If not, then I UI + I VI > 

n,,, which implies that every vertex of Ff occurs as the label at x of some edge of 
Fa connecting x to either u or v. Then F, contains a great x-cycle by Lemma 
2.6.3, and consequently a Scharlemann cycle by Lemma 2.6.2. 

(3) u, v antiparallel. We may assume without loss of generality that u is 
parallel to x. 

Let A = {vertices y of Fft: y appears at least twice as a label in W }, and 
B = {vertices y of Fft: y appears as a label in both U and V }. Since each vertex 
of Fft appears A > 3 times in U U V U W, and since by Corollary 2.6.7 and 
Lemma 2.6.8 we may assume that no vertex appears more than once in either U 
or V, it follows that every vertex of Fft belongs to either A or B. 

If y E A, then there exist two distinct edges el(y), e2(y) in Fft connecting 
y to dD/3 (with label x at y), such that e1(y) and e2(y) are parallel in F. 

If y E B, then there exist edges eu(y) (resp. ev(y)) in FI incident to y with 
label x, connecting y to an antiparallel (resp. parallel) vertex of F7. 

Let A be the subgraph of F, consisting of { e1(y), e2(y): y E A} . Then A 
is a disjoint union of properly embedded arcs in F7, each containing a single 
vertex. Consider an extremal component AO of A, containing the vertex yO, say. 
Then (at least) one of the two components of D3 - A0, call it R, contains no 
vertices of A. Thus all vertices of Fft in R belong to B. 

We now distinguish two cases. 

(3.A) R contains no vertices of Fr. Then the edges e 1(y) and e2(y) are 
parallel in Fft. Since they are also parallel in Fa, we are done. 

(3.B) R contains a vertex of Fft. Every vertex of R belongs to B, and hence 
in particular is connected by edges of F to both a parallel and an antiparallel 
vertex of Fr. It follows that the vertices of Frt in R cannot all be parallel to yo* 
Let 1I be the subgraph of Fft defined by H = {e,(y): y c R and y is 
antiparallel to yo }. Then H satisfies condition P(x), and hence contains an 
x-cycle a by Lemma 2.6.1. By Proposition 2.5.6, we may assume that every 
vertex of F,, belongs to a boundary edge, which implies that there are no vertices 
of F, in the interior of the disk bounded by a. Hence a is a great x-cycle, and so 

r1 contains a Scharlemann cycle by Lemma 2.6.2. 0 

Proof of Proposition 2.5.9. Recall that, in addition to the usual set-up, there 
is an essential surface (F, dF) c (M, T) with dF # 0 and boundary slope r1, 
such that P1 n F = 0. Consider P2 n F. The arcs in P2 n F define a graph F0, 
say, in D2, such that FO n F2 = {vertices of FO } = { vertices of F2}. Since F is 
essential in M, it is easy to see that the proof of Lemma 2.5.1 allows us to assume 
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that F0 contains no trivial loops. Also, since F n S = 0 and 3D2 C S, FO 
contains no boundary edges. 

Claim 2.6.9. F2 contains no parallel family of more than n1 boundary 
edges. 

Proof. As we go around an inner boundary component of P2, between 
successive intersections with any given inner boundary component of P1, we 
must encounter all the boundary components of F. Since F0 has no boundary 
edges and no trivial loops, the claim follows. 2 

Continuing with the proof of Proposition 2.5.9, suppose that A 2 2. Exactly 
as in the first paragraph of the proof of Proposition 2.5.8, we conclude that if 
neither F1 nor F2 contains a Scharlemann cycle, then F2 has a vertex x of one of 
the types illustrated in Figure 2.10. 

Type I. Then F2 contains a parallel family of An, ? 2n, boundary edges, 
contradicting Claim 2.6.9. 

Type II. Since there are at most n, parallel edges connecting x to 3D2 by 
Claim 2.6.9, there are at least n, parallel edges connecting x to y. Therefore 
either F1 or F2 contains a Scharlemann cycle, by Corollary 2.6.7 and Lemma 
2.6.8. 

Type III. We shall use the same notation as in the corresponding case of 
the proof of Proposition 2.5.8. There are again three sub-cases. 

(1) u, v, and x parallel. By Corollary 2.6.7, either F2 contains a Scharle- 
mann cycle or IUI < n1/2, I VI < n1/2. Then I WI ? n1. Therefore, by Claim 
2.6.9, I WI = n1. Since i0 has no boundary edges and no trivial loops, it follows 
that on the torus T, all the inner boundary components of P1 lie between some 
pair of boundary components of F. This is conclusion (iii) of the proposition. 

(2) u, v parallel, antiparallel to x. By Claim 2.6.9, I WI < n1. Hence 
I UI + I VI ? n1, which implies that every vertex of F1 occurs as the label at x of 
some edge of "2 connecting x to either u or v. Then F, contains a great x-cycle 
by Lemma 2.6.3, and consequently a Scharlemann cycle by Lemma 2.6.2. 

(3) u, v antiparallel. We may assume without loss of generality that u is 
parallel to x. Let X be the set of labels around u of the edges of F2 connecting 
u to x. (See Figure 2.11.) By Lemma 2.6.8, we may assume that IVI < nI, 
and hence that I UI + I WI > n1. By Lemma 2.6.6, we may also assume that 
X n U = 0. Therefore X C W. By the argument in case (1) above, we may 
assume that I WI < n1. Then, since F0 has no boundary edges and no trivial 
loops, no boundary components of F occur between any two adjacent inner 
boundary components of P1 corresponding to the labels in W. Since X C W, the 
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same is true for X, and hence (since F0 has no trivial loops) for U also. Since 
I UI + I WI > nI, it follows that all the boundary components of F occur 
between some pair of inner boundary components of PI, namely those corre- 
sponding to the two adjacent extremal labels of U and W. This is equivalent to 
conclusion (iii). E 

2.7. Dehn surgery on cabled manifolds 

In this section we complete the proof of the Cyclic Surgery Theorem. Let 
M be a compact, connected, irreducible 3-manifold with torus boundary, which 
is not Seifert-fibered. The following is an immediate consequence of Theorems 
1.0.1, 2.0.1, 2.0.2, and 2.0.3, and Addendum 2.0.4. 

COROLLARY 2.7.1. If l( M(r)) and l( M(s)) are cyclic groups, then either 
A(r, s) < 1 or M contains an essential torus which cobounds with 3M a cable 
space in M. 

Suppose, then, that M = M' U Cp, q, where Cp, q is a cable space of type 
(p, q) and 3M' is incompressible in M'. Suppose that 71(M(ri)) is cyclic, 
i = 1,2. We must show that A(r1, r2) < 1. Since 71(M(ri)) is cyclic, 3M' 
compresses in Cp, q(ri), i = 1,2. By [Gr1, Lemma 7.2] (or [Gr-L, Lemma 3.1]), 
this implies that there are co-ordinates on 3M such that either ri = pq or 
ri = (1 + kipq)/ki. Since A(pq,(l + kpq)/k) = 1 for all k, it follows that 
either A(r1, r2) < 1 or ri = (1 + kipq)/ki for some integer ki, i = 1,2. Note 
that A(r1, r2) = Ik1 - k2j. Then Cp, q(ri) is a solid torus ([Grl, Lemma 7.2]), and 
hence M(ri) M'(ri') for some slopes r<, r2' on 3M'. Moreover, there are 
co-ordinates on 3M' such that ri' = (1 + kipq)/kiq2, i = 1,2 (see [Gr1, 
Corollary 7.3] or [Gr-L, Lemma 3.1]). Then A(r', r2) = Ik1 - k21q2 = 
A(r1, r2)q2 which is greater than 1 if r1 # r2. Therefore applying Corollary 2.7.1 
to M' we infer that M' = M" U Cp, q" say, where AM" is incompressible in 
M ". By the same argument that we originally applied to M, there are co-ordinates 
on AM' such that ri'= (1 + k'p'q')/k', i = 1,2. But the argument in [Gr-L, 
p. 137] shows that this is incompatible with the previous co-ordinate expressions 
of the ri', unless q = 2 and Ik -kI 1 = L\(rl, r2) = 1. 

This completes the proof of the Cyclic Surgery Theorem. 

2.8. Property P for symmetric knots 

The purpose of this section is to give a proof of Corollary 7, which was 
stated in the introduction to the paper. 

Let K be a non-trivial knot in S3 such that there exists a periodic 
automorphism h of S3, not equal to the identity, satisfying h(K) = K. Our goal 
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is to show that K has Property P. Replacing h by a suitable power, we may 
assume that h has prime order, say p. Let Fix(h) denote the fixed-point set of h. 

We distinguish three cases. 
(1) h orientation-reversing. In this case K is amphicheiral and the result 

follows from Corollary 4. 
(2) h orientation-preserving, Fix(h) n K * 0. By the Smith Conjecture 

[M-B], Fix(h) $ K, so that Fix(h) n K _- S and h is an involution whose 
restriction to K is orientation-reversing. Thus K is strongly invertible, and hence 
has Property P by [B-S]. 

(3) h orientation-preserving, Fix(h) n K = 0. Let M be the complement 
of an h-invariant open tubular neighborhood of K, and let M * be the quotient 
of M by h M. Note that, here, the quotient map 3M -A 3M * is a p-fold (cyclic) 
covering. For any slope r on 3M, h M extends to a periodic automorphism of 
M(r) (which may fix pointwise the core of the attached solid torus J). Let hn 
denote the extension to M(1/n), where we are using the standard parametriza- 
tion of slopes on 3M. Note that if r *, s * are slopes on 3M * which lift to slopes 
r, s on 3M, then A(r *, s*) = pA(r, s) (consider the intersection between the 
pre-images of r * and s *, which consist of p copies of r and s respectively). 

There are two sub-cases. 

(A) Fix(h) * 0. In this case Fix(h,,) = Fix(h). Let N be the complement 
in M of an h-invariant open tubular neighborhood of Fix(h), and let N * be the 
quotient of N by h N. Since the linking number of K and Fix(h) is non-zero, N 
is irreducible, and hence so is N *. With the obvious notation, hn induces a free 
Zp-action on N(1/n) with quotient N *(rn*) for some slope r,* on 3M *. (In 
fact, using the usual meridian-longitude co-ordinates for 3 M*, we have rn* = 
1/pn.) Now suppose that M(l/n) is simply-connected. Then, by the Gener- 
alized Smith Conjecture [M-B], Fix(hn) is unknotted, so that N(l/n) is a 
homotopy solid torus. Hence N *(rn*) is also a homotopy solid torus. Since 
M(1/O) -S3 is simply-connected, and since A(r r*, ro*) = pA(1/n, 1/0) > 1 if 
n = O it follows from Theorem 2.4.4 applied to N * that, if n # 0, then N * is 
either a cable space or homeomorphic to 3 M * X I. Therefore N is either a cable 
space or homeomorphic to dM x I, and hence (since Fix(h) is unknotted) K is a 
torus knot. Since non-trivial torus knots have Property P [Ms], we are done. 

(B) Fix( h) = 0 . Suppose that M( 1/n) is simply-connected. 
If hn fixes the core of J, then by the Generalized Smith Conjecture, M is a 

solid torus, and hence K is trivial. 
If Fix(hn) = 0, then hn generates a free Zp-action on M(l/n), with 

quotient M*(rn*) for some slope rn* on 3M*. Hence T((M *(rn*)) is 
cyclic. Since M(1/0) = S3, the Cyclic Surgery Theorem implies that either 
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AL(rn*, ro*) < 1 or M * is Seifert-fibered. Since l\(rn*, ro*) = pl\(1/n, 1/0), the 
first conclusion is impossible if n # 0. If the second conclusion holds, then M is 
also Seifert-fibered. Hence K is a torus knot, and therefore has Property P. 
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