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Characteristic subsurfaces, character varieties and Dehn
fillings
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Let M be a one-cusped hyperbolic 3–manifold. A slope on the boundary of the
compact core of M is called exceptional if the corresponding Dehn filling produces
a non-hyperbolic manifold. We give new upper bounds for the distance between two
exceptional slopes ˛ and ˇ in several situations. These include cases where M.ˇ/

is reducible and where M.˛/ has finite �1 , or M.˛/ is very small, or M.˛/ admits
a �1 –injective immersed torus.
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1 Introduction

Throughout this paper, M will denote a compact, connected, orientable 3–manifold
whose boundary is a torus. We also assume that M is simple. In other words, it is
irreducible, @–irreducible, acylindrical, and atoroidal. Thus M is homeomorphic to the
compact core of a finite-volume hyperbolic 3–manifold with one cusp. For convenience,
we will call such a manifold M hyperbolic. A slope ˛ on @M (defined in Section 2)
is said to be exceptional if the Dehn filling M.˛/ does not admit a hyperbolic structure.
By the distance between two slopes ˛ and ˇ , we will mean their geometric intersection
number �.˛; ˇ/.

Cameron Gordon has conjectured in [18] that the distance between any two exceptional
slopes for M is at most 8, and also that there are exactly four specific manifolds M

which have a pair of exceptional slopes with distance greater than 5. The results in this
paper give upper bounds for the distance between two exceptional slopes in several
special cases. We assume for most of these results that M.ˇ/ is reducible, and that
M.˛/ is a non-hyperbolic manifold of one of several types. Here, and throughout the
paper, we will write Lp to denote a lens space whose fundamental group has order
p � 2.

Our first result applies in the case that M.˛/ has finite fundamental group.
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Theorem 1.1 If M.ˇ/ is reducible and if �1.M.˛// is finite, then �.˛; ˇ/ � 2.
Moreover, if �.˛; ˇ/D2, then H1.M /ŠZ˚Z=2, M.ˇ/DL2#L3 and �1.M.˛//Š

O�
24
�Z=j , where O�

24
denotes the binary octahedral group.

Although we expect that the case �.˛; ˇ/ D 2 does not arise, this theorem is a
considerable improvement on the previously known bounds (see Boyer–Zhang [6]).

Recall that a closed 3–manifold N is said to be very small if �1.N / has no non-Abelian
free subgroup. The next result deals with the situation where M.ˇ/ is reducible and
M.˛/ is very small. The proof is based on an analysis of the PSL2.C/ character
variety of a free product of cyclic groups. (See Section 2 for the definition of a strict
boundary slope.)

Theorem 1.2 Suppose that M.ˇ/ is a reducible manifold and ˇ is a strict boundary
slope. If M.˛/ is very small, then �.˛; ˇ/� 3.

A closed orientable 3–manifold N is said to admit a geometric decomposition if the
pieces of its prime and torus decompositions either admit geometric structures or are
I –bundles over the torus. According to Thurston’s Geometrization Conjecture, which
has been claimed by Perelman, any closed orientable 3–manifold admits a geometric
decomposition. If we strengthen the hypotheses of Theorem 1.2 by assuming that
M.˛/ admits a geometric decomposition, we obtain the following stronger result.

Theorem 1.3 Suppose that M.ˇ/ is a reducible manifold and M.˛/ is a very small
manifold that admits a geometric decomposition, then �.˛; ˇ/� 2.

This result is sharp. Indeed, if M is the hyperbolic manifold obtained by doing a
Dehn filling of slope 6 on one boundary component of the (right-hand) Whitehead link
exterior, then M.1/ŠL2#L3 is reducible, while M.3/ is Seifert with base orbifold
of the form S2.3; 3; 3/, and so is very small.

The next result applies in the case where M.˛/ contains an immersed �1 –injective
torus. Note that in this case, M.˛/ is either reducible, toroidal, or a Seifert fibred
space with base orbifold of the form S2.r; s; t/ (see Scott [24, Torus Theorem] and
Gabai [15, Corollary 8.3]). The bound �.˛; ˇ/ � 3 holds in the first two cases by
Gordon–Luecke [19], Oh [23] and Wu [28]. Thus the new information contained in this
theorem concerns the case where M.˛/ is Seifert fibred and geometrically atoroidal.

Theorem 1.4 Suppose that ˇ is a strict boundary slope for M . If M.ˇ/ is a reducible
manifold and if M.˛/ admits a �1 –injective immersed torus, then �.˛; ˇ/ � 4.
Moreover, if �.˛; ˇ/D 4, then M.˛/ is a Seifert-fibred manifold with base orbifold
S2.r; s; t/, where .r; s; t/ is a hyperbolic triple and at least one of r , s or t is divisible
by 4.
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The inequalities we obtain in the last two results are significantly sharper than those
obtained under comparable hypotheses in Boyer–Culler–Shalen–Zhang [3]. For The-
orem 1.4, this is due to the fact that in [3] it is only assumed that ˇ is the boundary
slope of an essential, planar surface in M . Here we are using additional information
about the topological structure of the connected sum decomposition of M.ˇ/.

Since a Seifert fibred manifold is either very small or contains a �1 –injective immersed
torus, the results above immediately yield the following corollary.

Corollary 1.5 If M.ˇ/ is a reducible manifold, ˇ is a strict boundary slope, and
M.˛/ is Seifert fibred, then �.˛; ˇ/ � 4. Further, if �.˛; ˇ/ D 4, then the base
orbifold B of M.˛/ is S2.r; s; t/, where .r; s; t/ is a hyperbolic triple and 4 divides
at least one of r; s; t .

We also obtain the following result in the case where M.ˇ/ is only assumed to be
non-Haken, rather than reducible.

Theorem 1.6 If ˇ is a strict boundary slope and M.ˇ/ is not a Haken manifold, then

(1) �.˛; ˇ/� 2 if M.˛/ has finite fundamental group;

(2) �.˛; ˇ/� 3 if M.˛/ is very small;

(3) �.˛; ˇ/� 4 if M.˛/ admits a �1 –injective immersed torus.

We will show that our results imply the following restricted version of Gordon’s
conjecture.

Theorem 1.7 If M.ˇ/ is a reducible manifold and ˇ is a strict boundary slope, then
M.˛/ is a hyperbolic manifold for any slope ˛ such that �.˛; ˇ/ > 5. If we assume
that the geometrization conjecture holds, then M.˛/ is a hyperbolic manifold for any
slope ˛ such that �.˛; ˇ/ > 4.

We remark that we expect the following to hold in this subcase of Gordon’s Conjecture.

Conjecture 1.8 If M.ˇ/ is a reducible manifold, then M.˛/ is a hyperbolic manifold
for any slope ˛ such that �.˛; ˇ/ > 3.

The bound in the conjecture cannot be lowered. For instance, if M is the hyperbolic
manifold obtained by doing a Dehn filling of slope 6 on one boundary component of
the Whitehead link exterior, then M.1/ŠL2#L3 is reducible while M.4/ is toroidal.
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The paper is organized as follows. Basic definition and notational conventions are
given in Section 2. We review the notion of a singular slope for a closed, essential
surface in Section 3 and prove Proposition 3.5, which characterizes the situations
in which a boundary slope can fail to be a singular slope. At the end of Section
3 we prove Theorem 1.6 and Theorem 1.7, assuming Theorem 1.1, Theorem 1.3
and Theorem 1.4. Section 4 contains the proof of a technical result (Proposition
3.3) about singular slopes in L.p; 1/#L.q; 1/ which is stated and applied earlier, in
Section 3. In Section 5 we reduce the proofs of Theorems 1.1 – 1.4 to more specific
propositions, which are proved in Sections 8, 9, 10 and 12 respectively. Section 6 is
a review of PSL2.C/–character variety theory and Section 7 contains results about
the representation varieties of fundamental groups of very small 3–manifolds. Section
11 is based on the characteristic submanifold methods used in [3], and extends some
of those results under the additional topological assumptions that are available in the
setting of this paper. These results are applied in Section 12.

The research described in this paper was supported by grants from NSERC, FCAR and
NSF. Steve Boyer was partially supported by NSERC grant OGP0009446 and FCAR
grant ER-68657. Marc Culler and Peter Shalen were partially supported by NSF grants
DMS-0204142 and DMS-0504975. Xingru Zhang was partially supported by NSF
grant DMS-0204428.

2 Notation and definitions

We will use the notation jX j to denote the number of components of a topological
space X . The first Betti number of X will be denoted b1.X /.

By a lens space we mean a closed orientable 3–manifold with a genus 1 Heegaard
splitting. A lens space will be called non-trivial if it is not homeomorphic to S2 �S1

or S3 .

By an essential surface in a compact, orientable 3–manifold, we mean a properly
embedded, incompressible, orientable surface such that no component of the surface is
boundary-parallel and no 2–sphere component of the surface bounds a 3–ball.

A slope ˛ on @M is a pair f˙ag where a is a primitive class in H1.@M /. The
manifold M.˛/ is the Dehn filling of M obtained by attaching a solid torus to the
boundary of M so that the meridian is glued to an unoriented curve representing the
classes in ˛ .

Definition 2.1 A slope ˇ on @M is called a boundary slope if there is an essential
surface F in M such that @F is a non-empty set of parallel, simple closed curves in
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@M of slope ˇ . In this case we say that F has slope ˇ . If M.ˇ/ is reducible, then of
course ˇ is a boundary slope.

Next consider a connected surface F properly embedded in a 3–manifold W with
bicollar N.F /DF � Œ�1; 1� in W . Denote by WF the manifold W nF �.�1

2
; 1

2
/ and

set FCDF�f1
2
g;F�DF�f�1

2
g� @WF . We say that W fibres over S1 with fibre F

if WF is connected and .WF ;FC[F�/ is a product .I; @I/–bundle pair. We say that
W semi-fibres over I with semi-fibre F if WF is not connected and .WF ;FC[F�/

is a twisted .I; @I/–bundle pair.

Definition 2.2 A slope ˇ on @M is called a strict boundary slope if there is an
essential surface F in M of slope ˇ which is neither a fibre nor a semi-fibre.

Definition 2.3 Given a closed, essential surface S in M , we let C.S/ denote the set
of slopes ı on @M such that S compresses in M.ı/. A slope � on @M is called a
singular slope for S if � 2 C.S/ and �.ı; �/� 1 for each ı 2 C.S/.

3 Reducible Dehn fillings and singular slopes

A fundamental result of Wu [27] states that if C.S/ ¤ ∅, then there is at least one
singular slope for S .

The following result, which links singular slopes to exceptional surgeries, is due to
Boyer, Gordon and Zhang.

Proposition 3.1 (Boyer–Gordon–Zhang [4, Theorem 1.5]) If � is a singular slope
for some closed essential surface S in M , then for an arbitrary slope ˛ we have

�.˛; �/�

8̂̂<̂
:̂

1 if M.˛/ is either small or reducible
1 if M.˛/ is Seifert fibred and S does not separate
2 if M.˛/ is toroidal and C.S/ is infinite
3 if M.˛/ is toroidal and C.S/ is finite:

Consequently if M.˛/ is not hyperbolic, then �.˛; �/� 3.

If b1.M /� 2 and M.ˇ/ is reducible, then work of Gabai [14] (see Corollary, page
462) implies that ˇ is a singular slope for some closed, essential surface. This is also
true generically when b1.M /D 1, as the following result indicates.

Theorem 3.2 (Culler–Gordon–Luecke–Shalen [11, Theorem 2.0.3]) Suppose that
b1.M / D 1 and that � is a boundary slope on @M . Then one of the following
possibilities holds.
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(1) M.�/ is a Haken manifold.

(2) M.�/ is a connected sum of two non-trivial lens spaces.

(3) � is a singular slope for some closed essential surface in M .

(4) M.�/Š S1 �S2 and � is not a strict boundary slope.

Thus when M.ˇ/ is reducible, either ˇ is a singular slope for some closed, essential
surface in M , or M.ˇ/ is S1 �S2 and ˇ is not a strict boundary slope, or M.ˇ/ is
a connected sum of two lens spaces. In particular, the inequalities of Proposition 3.1
hold unless, perhaps, M.ˇ/ is a very special sort of reducible manifold.

In order to prove our main results we must narrow the profile of a reducible filling
slope which is not a singular slope.

The following result will be proved in the next section of the paper.

Proposition 3.3 Suppose that M.ˇ/ D L.p; 1/#L.q; 1/ and there are at least two
isotopy classes of essential surfaces in M of slope ˇ . Then ˇ is a singular slope for
some closed essential surface in M .

Corollary 3.4 Suppose that M.ˇ/D P3#P3 and ˇ is a strict boundary slope. Then
ˇ is a singular slope for some closed essential surface in M .

The proposition below, which follows immediately from Theorem 3.2 and Corollary
3.4, summarizes the situation.

Proposition 3.5 Suppose that b1.M /D 1 and M.ˇ/ is a reducible manifold. Then
one of the following three possibilities occurs:

(1) ˇ is a singular slope for some closed essential surface in M ; or

(2) M.ˇ/ is homeomorphic to Lp#Lq , where q > 2; or

(3) M.ˇ/ is homeomorphic to S2 �S1 or P3#P3 , and ˇ is not a strict boundary
slope.

We end this section by giving the proofs of Theorem 1.6 and Theorem 1.7, assuming
Theorem 1.1, Theorem 1.3 and Theorem 1.4.

Proof of Theorem 1.6 Since we have assumed that ˇ is a strict boundary slope,
if M.ˇ/ is reducible, then Theorem 1.1, Theorem 1.3 and Theorem 1.4 imply that
the corollary holds. On the other hand, if M.ˇ/ is irreducible, then b1.M / D 1 as
M.ˇ/ is non-Haken. Since ˇ is a boundary slope, Theorem 3.2 implies that ˇ is a
singular slope for a closed essential surface in M . Proposition 3.1 now shows that the
conclusion holds.
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Proof of Theorem 1.7 First suppose that M.ˇ/ is either S1 �S2 or P3#P3 . Since
ˇ is a strict boundary slope, it follows from Proposition 3.5 that it must be a singular
slope for some closed, essential surface in M . Thus Proposition 3.1 shows that the
desired conclusion holds.

Next suppose that M.ˇ/¤ S1 �S2;P3#P3 . Boyer–Zhang [8, Theorem 0.6] implies
that if �.˛; ˇ/ > 5, then M.˛/ is virtually Haken. In particular, M.˛/ admits a
geometric decomposition (Casson–Jungreis [10], Gabai [16; 15], Gabai–Meyerhoff–
Thurston [17]). According to Gordon–Luecke [19] and either Wu [28] or Oh [23],
M.˛/ is irreducible and geometrically atoroidal as long as �.˛; ˇ/ > 3. Further,
Theorem 1.4 shows that M.˛/ is not Seifert fibred as long as �.˛; ˇ/ > 4. Thus
M.˛/ is hyperbolic if �.˛; ˇ/ > 5. This proves the first claim of the theorem. The
second follows similarly since M.˛/ admits a geometric decomposition for any slope
˛ if the geometrization conjecture holds.

4 Singular slopes when M.ˇ/ is L.p; 1/#L.q; 1/

This section contains the proofs of Proposition 3.3 and Corollary 3.4.

Let S.M / denote the set of essential surfaces in M . For each slope ˇ on @M , set

Sˇ.M /D fF 2 S.M / W @F 6D∅ and ˇ is the boundary slope of F g:

For each surface F 2Sˇ.M /, we use yF to denote the closed surface in M.ˇ/ obtained
by attaching meridian disks to F .

We begin with two propositions that give conditions on Sˇ.M / which guarantee that ˇ
is a singular slope for some closed essential surface in M . The first is a consequence
of the proof of Theorem 3.2 (cf [11, chapter 2]).

Proposition 4.1 (Culler–Gordon–Luecke–Shalen [11]) Suppose M.ˇ/ Š Lp#Lq

and that F 2 Sˇ.M / satisfies j@F j � j@F 0j for each F 0 2 Sˇ.M /. If yF is not an
essential 2–sphere in M.ˇ/, then ˇ is a singular slope for a closed, essential surface
in M .

Proposition 4.2 Suppose that M.ˇ/ŠLp#Lq and let F 2 Sˇ.M /. If there exists a
closed, essential surface S in M which is disjoint from F , then ˇ is a singular slope
for S .

Proof Since S is closed, essential, and disjoint from F , F is not a semi-fibre in
M . On the other hand, S compresses in M.ˇ/ŠLp#Lq , so ˇ 2 C.S/ (see Boyer–
Culler–Shalen–Zhang [3, Corollary 6.2.3]) then shows that S is incompressible in
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M.
 / for each slope 
 on @M such that �.
; ˇ/� 0. Wu’s theorem [27] states that
either �.
; 
 0/ � 1 for each 
; 
 0 2 C.S/, or there is a slope 
0 2 C.S/ such that
C.S/D f
 W�.
; 
0/� 1g. In the first case, it is immediate that ˇ is a singular slope
for S . In the second case, observe that we must have 
0 D ˇ , since otherwise there
would exist slopes 
 2 C.S/ with �.
; ˇ/ arbitrarily large. Thus ˇ is a singular slope
for S in either case.

We now proceed with the proof of Proposition 3.3, which depends on the two lemmas
below. First we introduce some notational conventions that will be used in the lemmas.

Conventions 4.3 Suppose that M.ˇ/ŠLp#Lq and that ˇ is not a singular slope for
a closed essential surface. It is evident that b1.M /D 1 and, since ˇ is not the slope of
the rational longitude of M , that each surface F 2 Sˇ.M / is separating. Fix a surface
P 2 Sˇ.M / such that

j@P j � j@F j for each F 2 Sˇ.M /:

Since P is connected and separating, we have that nD j@P j is even. It follows from
Proposition 4.1 that yP is an essential 2–sphere which bounds two punctured lens
spaces yX and yX 0 in M.ˇ/. We shall make the convention that yX is a punctured Lp

and yX 0 is a punctured Lq . We let X and X 0 denote the submanifolds bounded by P

in M , where X � yX and X 0 � yX 0 .

In Conventions 4.3, we shall say that .X;P / is unknotted if there is a solid torus
V �X and an n–punctured disk Dn with outer boundary @oDn such that

X D V [A .Dn � I/;

where AD .@oDn/� I is identified with an essential annulus in @V .

Note that if .X;P / is unknotted and p D 2, then .V;A/ is a twisted I –bundle pair
over a Möbius band and the induced I –fibring of A coincides with that from Dn � I .
Thus .X;P / is a twisted I –bundle.

Lemma 4.4 Assume that M.ˇ/ Š Lp#Lq and that ˇ is not a singular slope for a
closed essential surface. Let P 2 Sˇ.M / be chosen to have the minimal number of
boundary components. Suppose that .X;P / is unknotted. If F 2 Sˇ.M / is contained
in X , then F is isotopic to P .

Proof Write X D V [A .Dn�I/ as above and isotope F so as to minimize jA\F j.
Then F intersects V and Dn � I in incompressible surfaces. If A\F D ∅, then
F �Dn� I , and therefore Waldhausen [26, Proposition 3.1] implies that F is parallel
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into Dn � f0g � P . But then, j@F j � nD 1
2
j@P j, which contradicts our choice of P .

Thus F \A consists of a non-empty family of core curves of A. Another application
of [26, Proposition 3.1] implies that up to isotopy, each component of F \ .Dn� I/ is
of the form Dn � ftg for some t 2 .0; 1/. Since jA\F j has been minimized, it also
follows that each component of F \V is parallel into @V nA. It is now simple to see
that F is of the form Dn�ft1g[B[Dn�ft2g, where 0< t1 < t2 < 1 and B � V is
an annulus as described in the previous sentence. It follows that F is isotopic to P .

Lemma 4.5 Suppose that M.ˇ/ Š Lp#Lq and that ˇ is not a singular slope for a
closed essential surface in M . Let P 2 Sˇ.M / be chosen to have the minimal number
of boundary components.

(1) If M.ˇ/ŠLp#Lq , where Lp Š˙L.p; 1/, then .X;P / is unknotted.

(2) If M.ˇ/ Š Lp#Lq , where Lp Š ˙L.p; 1/ and Lq Š ˙L.q; 1/, then each
planar surface in Sˇ.M / is isotopic to P .

Proof (1) Suppose that M.ˇ/Š Lp#Lq , where Lp Š˙L.p; 1/. We will follow
Conventions 4.3; in particular, yX is the punctured Lp and j@P j D 2n. The desired
conclusion follows from a combination of [11] and [29]. In order to make the application
of these two papers clear, we must first set up some notation and recall some definitions.

Since M is hyperbolic, n � 2. The boundary of P cuts the boundary of M into
2n annuli A1;A

0
1
;A2;A

0
2
; : : : ;An;A

0
n , occurring successively around @M , such that

@X D P [ .[n
iD1

Ai/ and @X 0 D P [ .[n
iD1

A0i/. Let V be the attached solid torus
used in forming M.ˇ/. Then V may be considered as a union of 2n 2–handles
H1;H

0
1
;H2;H

0
2
; : : : ;Hn;H

0
n with attaching regions A1;A

0
1
;A2;A

0
2
; : : : ;An;A

0
n re-

spectively. Let yX be the manifold obtained from X by adding the 2–handles H1; : : :;Hn

along A1; : : : ;An respectively and similarly let yX 0 be the manifold obtained from X 0

by adding the 2–handles H 0
1
; : : : ;H 0n along A0

1
; : : : ;A0n . Then M.ˇ/ DM [ V D

yX [ yP
yX 0 , where yP is the 2–sphere obtained from P by capping off @P with meridian

disks of V . Let K be the core curve of the solid torus V . Then K is the union
of 2n arcs ˛1; ˛

0
1
; ˛2; ˛

0
2
; : : : ; ˛n; ˛

0
n such that ˛1; ˛2; : : : ; ˛n are properly embedded

in yX with regular neighborhoods H1;H2; : : : ;Hn and ˛0
1
; ˛0

2
; : : : ; ˛0n are properly

embedded arcs in yX 0 with regular neighborhoods H 0
1
;H 0

2
; : : : ;H 0n .

Consider the n–string tangle . yX I˛1; : : : ; ˛n/ in yX with strings ˛1; : : : ; ˛n . Let
Pi D P [Ai and call it the Ai –tubing surface of P . The surface P is said to be Ai –
tubing compressible if Pi is compressible in X , and is said to be completely Ai –tubing
compressible if Pi can be compressed in X until it becomes a set of annuli parallel
to [j¤iAj . The tangle . yX ; ˛1; : : : ; ˛n/ is called completely tubing compressible if it
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is completely Ai –tubing compressible for each of i D 1; : : : ; n. Since M does not
contain an essential torus, the argument of [11, 2.1.2] proves that . yX I˛1; : : : ; ˛n/ is
completely tubing compressible. Thus for each of i D 1; : : : ; n, there exist disjoint
properly embedded disks E

j
i in X , j ¤ i , such that @Ej

i meets Aj in a single
essential arc of Aj and is disjoint from Ak if k ¤ i; j (see [11, 2.1.2] for details).
This in turn implies that if � is a proper subset of fH1; : : : ;Hng, then the manifold
obtained by attaching 2–handles from � to X is a handlebody. In particular, for each
of i D 1; : : : ; n, X [ .[j¤iHj / is a solid torus. Thus each ˛i is a core arc of yX , ie
its exterior in yX is a solid torus.

Recall from [29] that a band in a compact 3–manifold W , whose boundary is a 2–
sphere, is an embedded disk D in W such that @D\@W consists of two arcs on @D . A
collection of properly embedded arcs in W is said to be parallel in W if there is a band
D in W which contains all these arcs. It is proved in [29] that if W is homeomorphic
to a once punctured lens space L.p; 1/ and .W I˛1; : : : ; ˛n/ is a completely tubing
compressible tangle, then the arcs ˛1; : : : ; ˛n are parallel in W . Though this result is
not explicitly stated in [29], its proof is explicitly dealt with in the proof of Theorem 1
of that paper. Hence in our current situation, ˛1; : : : ; ˛n are parallel arcs in yX . Let
D be a band in yX which contains all the arcs and H a regular neighborhood of D

in yX . We may assume that H contains every Hi . Since each ˛i is a core arc of H ,
V D yX n int.H / is a solid torus. More precisely H can be considered as a 2–handle
and yX , a once punctured Lp , is obtained by attaching H to the solid torus V along
an annulus A in @V . Thus (1) holds.

(2) Now suppose that M.ˇ/ŠLp#Lq , where Lp Š˙L.p; 1/ and Lq Š˙L.q; 1/.
Part (1) of this lemma implies that both .X;P / and .X 0;P / are unknotted. Fix a
planar surface F 2 Sˇ.M / whose boundary is disjoint from @P and which has been
isotoped to be transverse to P so that jF \P j has been minimized. Let F be the set
of surfaces in Sˇ.M / isotopic to F and which satisfy the conditions of this paragraph.

If F\P D∅, then Lemma 4.4 implies the desired result. Assume then that F\P ¤∅
and consider a component C of F \P which is innermost in the 2–sphere yF . Let
F0 be a subset of F whose boundary is the union of C and k , say, components of
@F . We assume that F and F0 are chosen from all the surfaces in F so that k is
minimized. Note that k > 0 by the minimality of jF \P j.

Without loss of generality we take F0 �X D V [A .Dn � I/, where A� @V wraps
p times around V , and after an isotopy of F which preserves P , we may arrange for
F0 to be transverse to A and jF0\Aj to be minimal. The components of F0\A are
either core circles of A or arcs properly embedded in A.
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First assume that C \A D ∅. Then F0 \A consists of core circles of A and an
argument like that used in the proof of Lemma 4.4 implies that F0 is parallel into
P , contrary to the minimality of jF \P j. Thus C \A¤∅. It follows that F0\A

contains arc components. Choose such an arc ˛ which is outermost in the disk yF0 and
let D0 be a planar subsurface of F0 it subtends and whose interior is disjoint from A.
Set ˛0 D @D0 n˛ .

If D0 � V , then D0 is a disk. If ˛0 is an essential arc in the annulus E D @V nA,
then it connects Dn�f0g to Dn�f1g. Hence D0 is a meridian disk of V and @D0 is
a dual curve on @V to the core of A. But this is impossible as A wraps p > 1 times
around V . Thus ˛0 is an inessential arc in E . It follows that ˛ is inessential in A and
it is easy to see that ˛ can be eliminated from F0\A by an isotopy of X , contrary to
the minimality of jF0\Aj.

Suppose next that D0 �Dn� I so that ˛0 �Dn� @I , say ˛0 �Dn�f0g. Note, then,
that ˛ is inessential in A. An argument like that used in the previous paragraph shows
that D0 cannot be a disk. Thus D0\ @M ¤∅. By Waldhausen [26, Proposition 3.1],
D0 is parallel into Dn�f0g, and it is now easy to see that F can be isotoped in M to
reduce k , contrary to our choices. This contradiction completes the proof.

Proof of Proposition 3.3 Let S0
ˇ
.M / � Sˇ.M / consist of the surfaces in Sˇ.M /

which are isotopic to P , and set S1
ˇ
.M /DSˇ.M /nS0

ˇ
.M /. By hypothesis, S1

ˇ
.M /¤

∅. Choose F 2 S1
ˇ
.M / so that j@F j � j@F 0j for all F 0 2 S1

ˇ
.M / and let Y;Y 0 be the

components of M split along F . Part (2) of Lemma 4.5 shows that F is not planar.

Let B be a component of Y \ @M and consider F0 D F [B . Let C1;C2; : : : ;Ck be
the components of the inner boundary F�

0
of the maximal compression body of F0 in

Y . If any of the Ci are closed, Proposition 4.2 shows that ˇ is a singular slope for
a closed essential surface in M . Suppose, then, that no Ci is closed. If some Ci is
essential, the fact that j@Ci j< j@F j implies that Ci 2 S0

ˇ
.M / and therefore is isotopic

to P . Since F is disjoint from Ci , we can isotope F into the complement of P . But
this is impossible as Lemma 4.4 would then imply that F 2 S0

ˇ
.M /. Thus each Ci

is a @–parallel annulus. Similar arguments show that either ˇ is a singular slope for
a closed essential surface in M or for each component B0 of @M \ Y 0 , the inner
boundary of the maximal compression body of F [B0 in Y 0 is a family of @–parallel
annuli. Hence if ˇ is not a singular slope for a closed essential surface in M , the
arguments of of [11, Section 2.2] imply that yF is essential in M.ˇ/ŠLp#Lq . This
cannot occur since the genus of F is positive. Thus ˇ is a singular slope for a closed
essential surface in M .
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Proof of Corollary 3.4 Suppose that ˇ is not a singular slope for some closed essential
surface in M . Then part (1) of Lemma 4.5 shows that both .X;P / and .X 0;P / are
unknotted. Since p D q D 2, this implies that both .X;P / and .X 0;P / are twisted
I –bundle pairs, and therefore, P is a semi-fibre. But then Proposition 3.3 shows that
ˇ cannot be a strict boundary slope. This completes the proof.

5 Preliminary reductions

In this section we state four propositions which, together with known results, respec-
tively imply our main theorems 1.1–1.4. Recall that M always denotes a compact,
connected, orientable, simple 3–manifold, whose boundary is a torus.

If M.ˇ/ is a reducible manifold, then it follows from Gordon–Luecke [19] that
�.˛; ˇ/ � 1 for any slope ˛ such that M.˛/ is reducible. If b1.M / � 2, then it
follows from Boyer–Gordon–Zhang [4, Proposition 5.1], that �.˛; ˇ/ � 1 for any
slope ˛ such that M.˛/ is not hyperbolic. The conclusions of all four of the main
theorems hold when �.˛; ˇ/ � 1. Thus, in the proofs of these theorems, we may
assume, without loss of generality, that M.˛/ is irreducible and b1.M /D 1.

Next we recall that, since ˇ is a boundary slope, it follows from Proposition 3.5 that
one of the following three possibilities occurs:

(1) ˇ is a singular slope for a closed essential surface in M ; or

(2) M.ˇ/ is homeomorphic to Lp#Lq , where q > 2; or

(3) M.ˇ/D S2 �S1 or P3#P3 and ˇ is not a strict boundary slope.

Since the conclusion of Proposition 3.1 implies that of each of the four main theorems,
we may also assume that neither ˛ nor ˇ is a singular slope for any closed essential
surface in M .

Therefore Theorems 1.1–1.4 follow, respectively, from the following four propositions.

Proposition 5.1 Suppose that b1.M /D 1 and neither ˛ nor ˇ is a singular slope for
a closed, essential surface in M . Assume as well that M.ˇ/ is either a connected sum
of two non-trivial lens spaces or S1 �S2 . If M.˛/ has finite fundamental group, then
�.˛; ˇ/� 2. Furthermore, if �.˛; ˇ/D 2, then H1.M /ŠZ˚Z=2, M.ˇ/ŠL2#L3

and �1.M.˛//ŠO�
24
�Z=j , where O�

24
is the binary octahedral group.

Proposition 5.2 Suppose that b1.M /D 1 and neither ˛ nor ˇ is a singular slope for
a closed, essential surface in M . Assume as well that M.˛/ is irreducible and M.ˇ/

is either a connected sum of two non-trivial lens spaces or S1 �S2 . If M.˛/ is a very
small manifold and ˇ is a strict boundary slope, then �.˛; ˇ/� 3.
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Proposition 5.3 Suppose that b1.M /D 1 and neither ˛ nor ˇ is a singular slope for
a closed, essential surface in M . Assume as well that M.˛/ is irreducible and M.ˇ/

is either a connected sum of two non-trivial lens spaces or S1 �S2 . If M.˛/ is a very
small manifold which admits a geometric decomposition, then �.˛; ˇ/� 2.

Proposition 5.4 Suppose that b1.M /D 1 and neither ˛ nor ˇ is a singular slope for
a closed, essential surface in M . Assume as well that M.ˇ/ is a connected sum of two
non-trivial lens spaces. If ˇ is a strict boundary slope and M.˛/ admits a �1 –injective
immersion of a torus, then �.˛; ˇ/ � 4. Moreover, if �.˛; ˇ/ D 4, then M.˛/ is
a Seifert fibred space with base orbifold B of M.˛/ of the form S2.r; s; t/, where
.r; s; t/ is a hyperbolic triple and 4 divides at least one of r; s; t .

These four propositions will be proved in Sections 8, 9, 10 and 12 respectively.

6 Background results on PSL2.C/–character varieties

In this section we gather together some background material on PSL2.C/–character
varieties that will be used in the proofs of our main results. See Culler–Shalen [12],
Culler–Gordon–Luecke–Shalen [11], and Boyer–Zhang [5; 6; 9] for more details. As
above, M will denote a compact, connected, orientable, hyperbolic 3–manifold with
boundary a torus.

Definitions 6.1 Let � be a finitely generated group. We shall denote by RPSL2
.�/

and XPSL2
.�/, respectively, the PSL2.C/–representation variety and the PSL2.C/–

character variety of � . (Note that these are affine algebraic sets, but are not necessarily
irreducible.) The map t W RPSL2

.�/!XPSL2
.�/ which sends a representation � to its

character �� is a regular map. When � is the fundamental group of a path-connected
space Y , we will frequently denote RPSL2

.�/ by RPSL2
.Y / and XPSL2

.�/ by
XPSL2

.Y /.

There is a unique conjugacy class of homomorphisms �W H1.@M /!�1.M /, obtained
by composing the inverse of the Hurewicz isomorphism �1.@M /!H1.@M / with some
homomorphism �1.@M /! �1.M / induced by inclusion. To simplify notation, we
shall often suppress � in statements that are invariant under conjugation in PSL2.C/.
For instance, given � 2 RPSL2

.�/ and ˛ 2H1.@M /, we may write �.˛/D˙I to
indicate that �.˛/ is contained in the kernel of � for every choice of �.

By a curve in an affine algebraic set we will mean an irreducible algebraic subset of
dimension 1. Suppose that X0 is a curve in XPSL2

.M / and let �X0 denote the smooth
projective model of X0 . There is a canonically defined quasi-projective curve X �

0
� �X0
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which consists of all points of �X0 that correspond to points of X0 . In particular, there
is a regular, surjective, birational isomorphism �W X �

0
! X0 . The points of X �

0
are

called ordinary points and the points in the finite set �X0�X �
0

are called ideal points.
It follows from [6, Lemma 4.1] that for every curve X0 in XPSL2

.M / there exists an
algebraic component R.X0/ of RPSL2

.M / such that t.R.X0//DX0 .

To each homology class a2H1.@M / we can associate a regular function faW X0!C
given by fa.�/D �.a/

2� 4. Each fa lifts to a rational function, also denoted by fa ,
on �X0 . It is shown in [11] (see also [6]) that the degrees of these functions on �X0

vary in a coherent fashion. Indeed, there is a seminorm k � kX0
W H1.@M IR/! Œ0;1/,

called the Culler–Shalen seminorm of X0 , determined by the condition that for each
a 2H1.@M /, kakX0

is the degree of fa on �X0 . As in [11], we use Zx.f / to denote
the order of zero of a rational function f on �X0 at a point x 2 �X0 , and use …x.f / to
denote the order of pole of f at a point x 2 �X0 . Then

(6–1) kakX0
D

X
x2 �X0

Zx.fa/D
X

x2 �X0

…x.fa/:

If k � kX0
¤ 0, we define

sX0
D minfkakX0

j a 2H1.@M /; kakX0
¤ 0g 2 Z n f0g:

We note that fa D f�a . As a notational convenience, if ˛ D f˙ag is a slope on @M ,
then we shall set f˛ PDfa D f�a , and define k˛kX0

PDkakX0
D k� akX0

.

It is possible that k � kX0
¤ 0, but kˇkX0

D 0 for some slope ˇ on @M . In this case
the slope ˇ is the unique slope on @M of norm 0, and we shall call X0 a ˇ–curve. If
X0 is a ˇ–curve, then for any slope ˛ on @M we have

(6–2) k˛kX0
D�.˛; ˇ/sX0

:

Hence if ˇ� is a dual slope for ˇ , that is, a slope such that �.ˇ; ˇ�/D 1, then

sX0
D kˇ�kX0

:

If ˇ is any slope on @M , then we may regard the character variety XPSL2
.M.ˇ// as an

algebraic subset of XPSL2
.M /. To see this, note that RPSL2

.M.ˇ// can be identified
with the Zariski closed, conjugation invariant subset Rˇ.M / WD f� 2 RPSL2

.M / W

�.ˇ/D˙Ig of RPSL2
.M /. Newstead [22, Theorem 3.3.5(iv)] shows that the image

of Rˇ.M / in XPSL2
.M / is Zariski closed and can be identified with XPSL2

.M.ˇ//.
We note that if X0 is a curve in XPSL2

.M.ˇ//�XPSL2
.M / such that k � kX0

¤ 0,
then X0 is a ˇ–curve.
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The following proposition is proved by Boyer [2].

Proposition 6.2 (Boyer [2, Proposition 6.2]) Let X0�XPSL2
.M.ˇ// be a ˇ–curve

for a slope ˇ on @M . Let ˇ� be a dual slope for ˇ and let ˛ 6D ˇ be a slope on @M .
Then

(1) For any point x 2X �
0

and any representation � such that �� D �.x/ we have
(a) If Zx.f˛/ > 0, then �.�1.@M // is either parabolic, or a finite cyclic group

whose order divides �.˛; ˇ/; and
(b) Zx.f˛/�Zx.fˇ�/, with equality if and only if �.�1.@M // is parabolic or

trivial.

(2) If fˇ� has a pole at each ideal point of �X0 , then for every divisor d > 1 of
�.˛; ˇ/ there exists x 2X �

0
such that Zx.f˛/ >Zx.fˇ�/, and �.�1.@M // is

a cyclic group of order d for every representation � such that �� D �.x/.

We call a subvariety X0 of XPSL2
.M / non-trivial if it contains the character of an

irreducible representation.

For some applications we need a stronger condition on X0 than non-triviality. A
character �� 2 X0 is called virtually reducible if there is a finite index subgroup z� of
�1.M / such that �jz� is reducible. We will say that X0 is virtually trivial if every point
of X0 is a virtually reducible character. The proof of Boyer–Zhang [9, Proposition
4.2] shows that if a curve X0 inXPSL2

.M / is non-trivial, but contains infinitely-many
virtually reducible characters, then X0 is virtually trivial and X0 is a curve of characters
of representations �1.M /!N � PSL2.C/ where

N D
˚
˙
�

z 0
0 z�1

�
;˙
�

0 w
�w�1 0

� ˇ̌
z; w 2C�

	
� PSL2.C/:

Ideal points, essential surfaces, and singular slopes

One of the key relations between 3–manifold topology and PSL2.C/–character
varieties is the construction described in Culler–Shalen [12], which associates essential
surfaces in a 3–manifold M to ideal points of curves in XPSL2

.M /.

Proposition 6.3 (Culler–Shalen [12], Culler–Gordon–Luecke–Shalen [11, Section
1.3], Boyer–Zhang [6]) Let X0 be a non-trivial curve in XPSL2

.M / and x an ideal
point of X0 . One of the following mutually exclusive alternatives holds: Either

(1) there is a unique slope ˛ on @M such that f˛ is finite-valued at x ; or

(2) f˛ is finite-valued for every slope ˛ on @M .
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In case .1/ the slope ˛ is a boundary slope. Moreover, if X0 is not virtually trivial,
then ˛ must be a strict boundary slope. In case .2/ M contains a closed, essential
surface.

If, as in case (1) of the proposition, there is a unique slope ˛ on @M such that
f˛.x/ 2C , we say that the boundary slope ˛ is associated to x .

Proposition 6.4 (Boyer–Zhang [6, Propositions 4.10 and 4.12]) Suppose that x is an
ideal point of a non-trivial curve X0 in XPSL2

.M / and that ˇ is a slope on @M such
that every closed, essential surface in M associated to x is compressible in M.ˇ/.
Suppose further that fı is finite-valued at x for every slope ı on @M . If either

� X0 �XPSL2
.M.ˇ//, or

� Zx.fˇ/ >Zx.fı/ for some slope ı on @M

then ˇ is a singular slope for some closed essential surface in M .

The PSL2 character variety of Lp#Lq

It was shown in Boyer–Zhang [6, Example 3.2] that XPSL2
.Z=p �Z=q/ is a disjoint

union of a finite number of isolated points and Œp
2
�Œq

2
� non-trivial curves, each isomorphic

to a complex line. If we fix generators x and y of the two cyclic free factors of
Z=p �Z=q , then each curve consists of characters of representations which send x

and y to elliptic elements of orders dividing p and q respectively. Such a curve is
parametrized by the complex distance between the axes of these two elliptic elements.

Explicit parametrizations of the curves in XPSL2
.Z=p �Z=q/ can be given as follows.

For integers j ; k with 1� j � Œp
2
� and 1� k � Œq

2
�, set

�D e�ij=p; �D e� ik=q; � D �C��1:

For z 2C define �z 2RPSL2
.Z=p �Z=q/ by

�z.x/D˙

�
� 0

0 ��1

�
; x�z.y/D˙

�
z 1

z.� � z/� 1 � � z

�
:

The characters of the representations �z parameterize a curve X.j ; k/�XPSL2
.Z=p�

Z=q/. Moreover, the correspondence C!X.j ; k/, z 7! ��z
, is bijective if j < Œp

2
�

and k < Œq
2
� and a 2-1 branched cover otherwise.

We shall denote by Dk the dihedral group of order 2k . Recall that a finite subgroup of
PSL2.C/ is either cyclic or dihedral, or else it is isomorphic to the tetrahedral group
T12 , the octahedral group O24 , or the icosahedral group I60 .
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The following elementary, but tedious, lemma characterizes the points in the curve
X.j ; k/ which correspond to the character of a representation with finite image. We
leave its verification to the reader.

Lemma 6.5 Fix integers 2 � p � q . Let Xp;q be the union of all curves X.j ; k/�

XPSL2
.Z=p �Z=q/ such that j and k are relatively prime to p and q respectively.

Then

(1) An irreducible component X.j ; k/�Xp;q contains exactly two reducible char-
acters if p > 2, and one if p D 2.

(2) An irreducible component X.j ; k/ � Xp;q contains the character of an irre-
ducible representation � whose image lies in N if and only if p D 2. Moreover,
if p D 2 and q > 2, then there is exactly one such character �� and the image
of � is Dq .

(3) Xp;q contains the character of a representation whose image is T12 if and only
if .p; q/ 2 f.2; 3/; .3; 3/g. If .p; q/D .2; 3/ there is a unique such character and
if .p; q/D .3; 3/, then there are two.

(4) Xp;q contains the character of a representation whose image is O24 if and only
if .p; q/ 2 f.2; 3/; .2; 4/; .3; 4/; .4; 4/g. If .p; q/ D .3; 4/ there are two such
characters, and in the remaining cases there is only one.

(5) Xp;q contains the character of a representation whose image is I60 if and only
if .p; q/ 2 f.2; 3/; .2; 5/; .3; 3/; .3; 5/; .5; 5/g. There are eight such characters
if .p; q/D .3; 5/ or .p; q/D .5; 5/, four if .p; q/D .2; 5/, and two if .p; q/D
.2; 3/ or .p; q/D .3; 3/.

The next result follows from Proposition 6.4 and work of Culler, Shalen and Dunfield.
Recall that if X0 � XPSL2

.M / is a ˇ–curve and ˇ� is a dual class to ˇ , then
sX0
D kˇ�kX0

D
P

x2 �X0
…x.fˇ�/.

Proposition 6.6 Suppose that M.ˇ/ Š Lp#Lq and let x be an ideal point of the
curve X.j ; k/�XPSL2

.M.ˇ//�XPSL2
.M /. Then either

(1) ˇ is a singular slope for a closed essential surface in M , or

(2) k � kX .j ;k/ ¤ 0 and

sX .j ;k/ �…x.fˇ�/�

�
4 if j ¤ p

2
and k ¤ q

2

2 if either j D p
2

or k D q
2

.
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Proof Suppose that ˇ is not a singular slope for a closed essential surface in M .
Then Proposition 6.4 implies that for each ideal point x of X.j ; k/ and for each slope
˛ 6D ˇ , we have f˛.x/D1.

The natural surjection

�W Z=2p �Z=2q! Z=p �Z=q

induces an inclusion

��W XPSL2
.Z=p �Z=q/!XPSL2

.Z=2p �Z=2q/:

Given a curve X0 � XPSL2
.Lp#Lq/ D XPSL2

.Z=p �Z=q/, there is a curve Y0 �

XSL2
.Z=2p�Z=2q/ whose image in XPSL2

.Z=2p�Z=2q/ coincides with ��.X0/.
The associated regular map gW Y0!X0 has degree 1 if j ¤ p

2
and k ¤ q

2
and is of

degree 2 otherwise. Now Y0 is also a complex line and so has a unique ideal point y .
Extend g to a map zgW �Y0!

�X0 between the smooth projective models, and observe
that zg.y/D x . If ž� 2 ��1.ˇ�/ it is easy to see that fˇ� ı zg D f ž� . It can be shown
that

…x.fˇ�/D

(
…y.f ž�/ if j ¤ p

2
and k ¤ q

2
1
2
…y.f ž�/ if either j D p

2
or k D q

2
:

We are reduced, then, to calculating …y.f ž�/.

According to Dunfield [13, Proposition 2.2], we may choose the simplicial tree Ty

associated to y so that …y.f ž�/ equals the translation length l. ž�/ of the automor-

phism of Ty associated to ž� . Now the action of Z=2p�Z=2q on Ty factors through
an action of Z=p �Z=q , which in turn determines an action of �1.M / on Ty via the
surjection �1.M /! �1.M.ˇ//D Z=p �Z=q . In particular, l. ž�/D l.ˇ�/, where
we have identified ˇ� with its image in �1.M / under one of the homomorphisms in
the conjugacy class � (see Definitions 6.1).

Consider now an essential surface F properly embedded in M which is dual to
the action of �1.M /. The observation above implies that F can be chosen so that
j@F j D l.ˇ�/. Let F0 be a component of F with non-empty boundary. Note that j@F0j

is even since F0 is separating in M . If j@F0j D 2, then the genus of F0 is at least
1 since M is hyperbolic. The proof of [11, Theorem 2.0.3] then shows that ˇ is the
singular slope for some closed essential surface, contrary to our hypotheses. Hence

…y.f ž�/D l. ž�/D l.ˇ�/D j@F j � 4

and

…x.fˇ�/�

(
4 if j ¤ p

2
and k ¤ q

2

2 if either j D p
2

or k D q
2

.
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Jumps in multiplicities of zeroes

Let X0 be a non-trivial curve in XPSL2
.M / Recall that R.X0/ is the unique 4–

dimensional subvariety of RPSL2
.M / satisfying t.R.X0// D X0 . Suppose that ˛

is a slope on @M such that f˛jX0 6D 0. As a means to estimate k˛kX0
, we will be

interested in the set

JX0
.˛/D fx 2 �X0 jZx.f˛/ >Zx.fı/ for some slope ı such that fı 6D 0g:

Lemma 6.7 Suppose that x 2 JX0
.˛/ is not an ideal point.

(1) If �� D �.x/ then �.˛/D˙I . [11, Proposition 1.5.4]

(2) If b1.M /D 1, there exists a representation � , which is either irreducible or has
non-Abelian image, such that �� D �.x/. [2, Proposition 2.8]

(Note that there exist irreducible PSL2.C/ representations whose image is a Klein
4–group, and hence is Abelian.)

Lemma 6.8 Let X0 �XPSL2
.M.ˇ//�XPSL2

.M / be a ˇ–curve for a slope ˇ on
@M . Let ˇ� D f˙b�g be a dual slope for ˇ . Suppose that ˛ is a slope on @M such
that �.˛; ˇ/ > 1. For any non-ideal point x 2 JX0

.˛/ and any representation � such
that �� D �.x/ we have that �.b�/ is an elliptic element with order d for some divisor
d > 1 of �.˛; ˇ/.

Proof First observe that for any slope ı on @M we have fı D f�.ı;ˇ/ˇ� and so
Zx.fı/D�.ı; ˇ/Zx.fˇ�/. In particular, since x 2JX0

.˛/, we must have Zx.fˇ�/>

0. Thus Zx.f˛/D�.˛; ˇ/Zx.fˇ�/ >Zx.fˇ�/. It now follows from Proposition 6.2
that �.�1.@M // is a cyclic group of order d > 1, where d divides �.˛; ˇ/. Since
this cyclic group is generated by �.b�/, the lemma follows.

Proposition 6.9 Let X0 � XPSL2
.M / be a non-trivial curve and let ˛ be a slope

on @M such that f˛jX0 ¤ 0. Suppose that there is no closed, essential surface in M

which remains essential in M.˛/. If x 2 JX0
.˛/ is an ideal point, then either

(1) ˛ is a singular slope for a closed, essential surface in M , or

(2) for any slope ˇ¤ ˛ , fˇ has a pole at x . In particular, ˛ is a boundary slope and
X0 is not a ˇ–curve. Moreover, if b1.M / D 1, then M.˛/ is either a Haken
manifold, S1 �S2 , or a connected sum of two non-trivial lens spaces.
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Proof Suppose that ˛ is not a singular slope for a closed, essential surface in M . It
then follows from Proposition 6.4 that for any slope ˇ 6D ˛ the function fˇ has a pole
at x . Hence Proposition 6.3 shows that ˛ is a boundary slope. Finally if b1.M /D 1,
we can apply Theorem 3.2 to deduce that M.˛/ is either Haken, S1 � S2 , or is a
connected sum of two non-trivial lens spaces.

Proposition 6.10 Let X0 be a non-trivial curve in XPSL2
.M / and ˛ a slope on @M

such that f˛jX0 6D 0. Suppose that JX0
.˛/ contains an ordinary point x of X �

0
and

that there exists a representation � , which is either irreducible or has non-Abelian
image, such that �� D �.x/. If either

(i) H 1.M.˛/I sl2.C/�/D 0 and �.�1.@M // 6D f˙Ig, or

(ii) there is a slope ˇ such that X0 � XPSL2
.M.ˇ// and H 1.M I sl2.C/�/ Š C

(for instance the latter holds when M.ˇ/ŠLp#Lq ),

then

Zx.f˛/D

(
Zx.fˇ/C 1 if � is conjugate into N ;

Zx.fˇ/C 2 otherwise.

Moreover, in case (i) �.x/ is a simple point of XPSL2
.M / and in case (ii) �.x/ is a

simple point of XPSL2
.M.ˇ//.

Proof If hypothesis (i) holds the conclusion follows from Ben Abdelghani–Boyer [1,
Theorem 2.1].

Assume that hypothesis (ii) holds. Let ˇ� be a dual slope to ˇ and fix simple closed
curves a, b and b� on @M such that ˛ D f˙Œa�g, ˇ D f˙Œb�g and ˇ� D f˙Œb��g.
We also identify Œa�, Œb� and Œb�� with their images under a homomorphism in the
conjugacy class � (see Definitions 6.1).

Observe that Proposition 6.2 implies that �.�1.@M // is a non-trivial, finite cyclic
group. Thus, �.�1.@M // is generated by �.Œb��/. After possibly replacing � by a
conjugate representation, we may assume that

�.Œb��/D˙

�
t 0

0 t�1

�
where t ¤˙1.

Since X0�XPSL2
.M.ˇ// and H 1.M I sl2.C/�/ŠC , Boyer [2, Theorem A] holds in

our situation. In particular, the Zariski tangent space of X0 at �� can be identified with
H 1.M.ˇ/I sl2.C/�/ŠC . We can therefore find a 1–cocycle u2Z1.M.ˇ/I sl2.C/�/
such that xu¤ 0 2H 1.M.ˇ/I sl2.C/�/ and an analytic curve ��s

in X0 of the form
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�s D exp.suCO.s2//� defined for jsj small. Applying the arguments of [1, Sec-
tion 1.1.1 and Section 1.2.1] to this curve, modified to the PSL2.C/ setting (cf [1,
Section 2]), shows that the identities

Zx.f˛/D

(
Zx.fˇ/C 1 if � is conjugate into N ;

Zx.fˇ/C 2 otherwise.

hold as long as we can prove that u.Œa�/¤ 0.

Suppose that u.Œa�/D 0 in order to arrive at a contradiction. We also have u.Œb�/D 0,
since u 2Z1.M.ˇ/I sl2.C/�/, and thus u.mŒa�C nŒb�/D 0 for each pair of integers
m; n. Let u.Œb��/D

� p q
r �p

�
. We have assumed that f˛jX0 6D 0, and therefore Œa� and

Œb� span a subgroup of index k <1 of H1.@M /. Then

0D u.Œb��/k D

k�1X
jD0

�.Œb��/j u.Œb��/�.Œb��/�j

D

�
kp .1C t2C � � �C t2.k�1//q

.1C t�2C � � �C t�2.k�1//r �kp

�
;

and therefore p D 0. Consider the coboundary ı0W sl2.C/! Z1.M.ˇ/I sl2.C/�/
given by .ı0.A//.w/DA� �.w/A�.w/�1 and set

u1 D u� ı0

��
0 q

1�t2
r

1�t�2
0

��
:

Since �.Œb�/D˙I we have u1.Œb�/Du.Œb�/D0, while the fact that �.Œb��/D˙
�

t 0
0 t�1

�
implies that u1.Œb

��/D 0 also. Hence u1D 0, which is impossible as 0¤ xuD xu1D 0.

Finally, if M.ˇ/ŠLp �Lq we have �1.M.ˇ//Š Z=p �Z=q . A simple calculation
shows that the space of 1–cocycles Z1.M.ˇ/I sl2.C/�/ is isomorphic to C4 . Thus
H 1.M.ˇ/I sl2.C/�/ŠC . This completes the proof.

7 PSL2.C/–representations of fundamental groups of very
small 3–manifolds

We begin by considering a 3–manifold W which fibres over S1 with fibre a torus T

and monodromy A. It is known that W is a Sol manifold if and only if j tr.A/j > 2

and a Seifert fibred space otherwise. Similarly, if W semi-fibres over the interval with
semi-fibre a torus T and gluing map AD

�
a b
c d

�
2 SL2.Z/, then W is a Sol manifold

if and only if ad ¤ 0; 1, and a Seifert fibred space otherwise.
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Proposition 7.1 Suppose that W either fibres over the circle with torus fibre or semi-
fibres over the interval with torus semi-fibre. If �W �1.W /! PSL2.C/ is irreducible,
then up to conjugation, the image of � is T12 , or O24 , or lies in N . Moreover,

� if the image is T12 , then �.�1.T //D Z=2˚Z=2 and W fibres over S1 ;

� if the image is O24 , then �.�1.T //D Z=2˚Z=2 and W semi-fibres over the
interval.

Proof Let T denote the (semi-)fibre and consider the normal subgroup GD�.�1.T //

of �.�1.W //. We can conjugate G so that it equals Z=2˚Z=2�N , or it is contained
in either P , the group of upper-triangular parabolic matrices, or D , the group of diagonal
matrices.

If G D Z=2˚Z=2, a simple calculation implies that �.�1.W // is finite. The only
finite subgroups of PSL2.C/ which contain such a normal subgroup are T12;O24 ,
and the dihedral group D2 �N . The first possibility is ruled out when T separates
M.˛/ into two twisted I –bundles over the Klein bottle, since otherwise � would
induce a surjection of Z=2 �Z=2D �1.W /=�1.T / onto T12=.Z=2˚Z=2/D Z=3,
which is impossible. Similarly if T does not separate, then the image of � cannot be
O24 .

Next we can rule out the possibility that f˙Ig ¤ G � P since if this case did arise,
the normality of G in �.�1.W // would then imply that � is reducible.

Finally assume that G � D . If G D f˙Ig, then � factors through �1.W /=�1.T /,
which is isomorphic to either Z or Z=2�Z=2. The irreducibility of � excludes the
former possibility while the lemma clearly holds in the latter. If f˙Ig ¤ G � D is
non-trivial, then its normality in �.�1.W // implies that the latter is a subset of N .

Proposition 7.2 Let W be a torus bundle over S1 with monodromy A2SL2.Z/ and
fibre T . Consider a representation �W �1.W /! PSL2.C/ which is either irreducible
or has non-Abelian image.

(1) If � is irreducible, then H 1.W I sl2.C/Ad�/D 0 as long as tr.A/¤�2.

(2) If � is reducible and W fibres over the circle and the image of � contains
non-trivial torsion, then it is Seifert fibred. Moreover, if there is torsion of order
greater than 2, then j tr.A/j � 1.

Proof Write AD
�

a b
c d

�
and recall that there is a presentation of �1.W / of the form

hx;y; t j Œx;y�D 1; txt�1
D xayc ; tyt�1

D xbyd
i;
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where x;y generate �1.T / and t projects to a generator xt of �1.S
1/Š Z.

(1) Consider the exact sequence 1! �1.T /! �1.W /!Z! 1. The Lyndon–Serre
spectral sequence yields an associated exact sequence in cohomology

0 �!H 1.ZI .sl2.C/Ad�/
�1.T // �!H 1.�1.W /I sl2.C/Ad�/

�!H 1.T I sl2.C/Ad�/
Z
�! 0:

Since � is irreducible, we have either �.�1.T //DZ=2˚Z=2, or f˙Ig¤�.�1.T //�

D and �.�1.W //�N .

If �.�1.T //DZ=2˚Z=2, then .sl2.C/Ad�/
�1.T /D 0. On the other hand, using dual-

ity with twisted coefficients and the fact that �.T IAd �/D 3�.T /D 0, we see that the
associated Betti numbers satisfy b1.T I sl2.C/Ad�/D 2b0.T I sl2.C/Ad�/. But since
�j�1.T / is irreducible, we have b0.T I sl2.C/Ad�/D 0. Thus H 1.T I sl2.C/Ad�/

ZD

0, which implies the desired result.

Next suppose that f˙Ig ¤ �.�1.T //�D and �.�1.W //�N . In this case

.sl2.C/Ad�/
�1.T / D

˚�
z 0
0 �z

�
j z 2C

	
ŠC:

The irreducibility of � implies that up to conjugation we may suppose that �.t/ D
˙
�

0 1
�1 0

�
and therefore Z acts on .sl2.C/Ad�/

�1.T / by multiplication by �1. Thus
the set of invariants of this action, which is isomorphic to H 0.ZI .sl2.C/Ad�/

�1.T //,
is 0. Duality then yields H 1.ZI .sl2.C/Ad�/

�1.T //D 0.

On the other hand, it is easy to see that H 1.�1.T /I sl2.C/Ad�/ may be identified
with the set of homomorphisms of �1.T / into C in such a way that if f is such a
homomorphism, then xt acts on f as

.xt �f /.xmyn/D�f .xamCbnycmCdn/D�.amC bn/f .x/� .cmC dn/f .y/:

Hence f is invariant under the action of xt if and only if .f .x/; f .y// is a .�1/–
eigenvector of the transpose of A. It follows that

H 1.�1.W /I sl2.C/Ad�/ŠH 1.T I sl2.C/Ad�/
Z
¤ 0

if and only if tr.A/D�2.

(2) Write A D
�

a b
c d

�
. As � is reducible with non-Abelian image, we must have

f˙Ig ¤ �.�1.T //� P ŠC . Then the image of � lies in U . Suppose that

�.x/D˙

�
1 �

0 1

�
; �.y/D˙

�
1 �

0 1

�
; �.t/D˙

�
u v

0 u�1

�
:
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Since the kernel of the projection U !D is P ŠC , any torsion element in the image
of � is sent to an element of the same order in D under this projection. On the other
hand, since any element of �1.W / can be written as a product of the form xlymtn ,
the image of �.�1.W // under the projection to D is isomorphic to fun j n 2Zg �C� .
Thus �.�1.W // contains a non-trivial torsion element if and only if u is a non-trivial
root of unity. Assume this occurs. The relations in the presentation for �1.W / imply
that

u2� D a� C c�; u2� D b� C d�:

Thus u2 is an eigenvalue of A. It is well known that these eigenvalues are roots of
unity if and only if j tr.A/j � 2. Moreover, when tr.A/D 2 we have uD˙1, when
tr.A/D�2 we have uD˙i . Thus the proposition holds.

Proposition 7.3 Let W semi-fibre over the interval with semi-fibre T . If there is a
representation �W �1.W /! PSL2.C/ which is reducible and has non-Abelian image,
then the torsion elements in the image of � have order 2.

Proof Now W splits along T into two twisted I –bundles over the Klein bottle. Thus
there is a presentation of �1.W / of the form

hx1;y1;x2;y2 j x1y1x�1
1 D y�1

1 ;x2y2x�1
2 D y�1

2 ;x2
1 D x2a

2 yc
2;y1 D x2b

2 yd
2 i;

where x1;y1 generate the fundamental group of one of the twisted I –bundles, x2;y2

generate the fundamental group of the other, and AD
�

a b
c d

�
is the gluing matrix. Note

that �1.T / is generated by either pair x2
1
;y1 and x2

2
;y2 .

We can suppose that either f˙Ig¤ �.�1.T //�P or �.�1.T //�D . In the latter case,
�.�1.T //Df˙Ig as otherwise the normality of �1.T / in �1.W / and the reducibility
of � imply that �.�1.W //�D .

Assume first that �.�1.T //D f˙Ig. Then �.x1/
2 D �.y1/D �.x2/

2 D �.y2/D˙I .
Note that neither �.x1/D˙I nor �.x2/D˙I as otherwise the image of � would be
Abelian. Thus up to conjugation we have �.x1/D˙

�
i 0
0 �i

�
and �.x2/D˙

�
i 1
0 �i

�
.

Thus the only torsion elements in the image of � have order 2.

Next assume that f˙Ig ¤ �.�1.T //� P . The relation x1y1x�1
1
D y�1

1
implies that

exactly one of x2
1
;y1 is sent to ˙I by � . If �.x2

1
/ D ˙I , then up to conjugation,

�.y1/ D ˙
�

1 1
0 1

�
. Hence, as x2

2
D x2d

1
y�c

1
and y2 D x�2b

1
ya

1
, we have �.x2

2
/ D

˙
�

1 �c
0 1

�
; �.y2/D˙

�
1 a
0 1

�
. Thus the image of � is generated by the images of x1;y1

and x2 . Projecting into D then shows that the only non-trivial torsion elements in the
image of � must have order 2. If c D 0, then ad D 1 and so W is Seifert fibred. On
the other hand, if c ¤ 0, then �.x2/D˙

�
1 � c

2

0 1

�
and so the relation x2y2x�1

2
D y�1

2
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implies that aD 0. Therefore ad D 0 and W is Seifert fibred. A similar argument
shows that the proposition holds when �.y1/D˙I .

Lemma 7.4 Let W be a closed, connected, orientable, irreducible, very small
3–manifold which is not virtually Haken. Then the image of any representation
�W �1.W /! PSL2.C/ is a finite group.

Proof Let �W �1.W /! PSL2.C/ be a representation. The Tits alternative implies
that there is a finite index subgroup G of �.�1.W // which is solvable. It suffices to
show that G is finite.

If G D f˙Ig we are done so assume otherwise. Then since G is solvable it contains
a non-trivial normal subgroup A which is Abelian. Up to conjugation A is either
contained in D , or in P , or is the Klein 4–group Z=2˚Z=2 realized in PSL2.C/ as

D2 D
˚
˙I; ˙

�
i 0
0 �i

�
; ˙

�
0 1
�1 0

�
; ˙

�
0 i
i 0

�	
:

Since A¤ f˙Ig is normal in G , it follows that A�N if the first or third possibilities
arise. In these cases let A0 DG \D and observe that A0 is Abelian and has index at
most 2 in G . Then A0 has finite index in �.�1.W // and, since W is not virtually
Haken, must therefore be finite. But then �.�1.W // is finite and we are done.

On the other hand, suppose that A� P . Then the non-triviality of A and its normality
in G imply that G � U , the group of upper-triangular matrices in PSL2.C/. Since
each finite degree cover zW of W is irreducible but not Haken, it has zero first Betti
number. Thus the projection of G in D is finite and so the kernel of this projection
is of finite index in G . But this kernel lies in PC , the subgroup of P consisting of
matrices of trace 2. Since this group is isomorphic to C , and again using the fact that
W is not virtually Haken we see that the kernel is trivial. Thus G is finite.

We now apply the results above to the following Proposition.

Proposition 7.5 Suppose that X0�XPSL2
.M / is a non-trivial curve and ˛ is a slope

on @M which is not a singular slope for any closed, essential surface in M . If M.˛/

either has a finite fundamental group, or is an irreducible, very small 3–manifold which
is not virtually Haken, then

(1) JX0
.˛/�X �

0
;

(2) for each x 2 JX0
.˛/, there is an irreducible representation � with finite image

such that �� D �.x/, �.�1.@M //¤ f˙Ig and H 1.M.˛/I sl2.C/�/D 0;

(3) if x 2 JX0
.˛/, then �.x/ is a simple point of XPSL2

.M /.

Geometry & Topology, Volume 12 (2008)



258 Steve Boyer, Marc Culler, Peter B Shalen and Xingru Zhang

Proof Our hypotheses imply that b1.M / D 1. Thus Proposition 6.9 implies that
JX0

.˛/�X �
0

. Consider x 2 JX0
.˛/ and suppose that �� D �.x/.

If �1.M.˛// is finite, then so is the image of � . The same conclusion holds when
�1.M.˛// is not finite by Lemma 7.4.

Suppose next that � is reducible. Since its image is finite, it is conjugate to a diagonal
representation and as this is true for each representation in t�1.�.x/, any two repre-
sentations in t�1.�.x// are conjugate. Hence the dimension of t�1.�.x// is at most
2, contrary to [12, Corollary 1.5.3]. This shows that � is irreducible. The fact that
�.�1.@M //¤ f˙Ig can now be proven in exactly the same way as [5, Lemma 4.2].

Next we show that H 1.M.˛/; sl2.C/�/D 0. Let G D �.�1.M.˛// and consider the
left �1.M.˛//–module CŒG�� . It is well known that CŒG� splits as a direct sum ˚�V�
of irreducible CG –modules V� and each irreducible CG –module appears at least once
in this decomposition (see Serre [25]). On the other hand if W !M.˛/ is the finite
cover corresponding to the kernel of � , our hypotheses imply that H 1.W IC/ D 0.
This is obvious if �1.M.˛// is finite and follows from the fact that W is irreducible
and non-Haken otherwise. Thus

0DH 1.W IC/DH 1.M.˛/ICŒG��/D˚�H 1.M.˛/I .V� /�/:

This shows that for any irreducible CŒG�–module V , H 1.M.˛/IV�/D0 and therefore,
H 1.M.˛/; sl2.C/�/D 0 as claimed.

Finally, we note that, according to [7, Theorem 3], conditions (1) and (2) imply that
�.x/ is a simple point of XPSL2

.M /.

Proposition 7.6 Let X0 be a non-trivial curve in XPSL2
.M / and ˛ a slope on @M

such that f˛jX0 6D 0. Suppose that ˛ is not a singular slope for a closed, essential
surface in M . Assume as well that either

(i) �1.M.˛// is finite or M.˛/ is an irreducible very small 3–manifold which is
not virtually Haken, or

(ii) M.˛/ is a non-Haken Seifert manifold with base orbifold of the form S2.r; s; t/

and there is a slope ˇ on @M such that M.ˇ/Š S1 �S2 , or

(iii) X0 �XPSL2
.M.ˇ//, where ˇ is a slope on @M such that M.ˇ/ŠLp#Lq .

Then
k˛kX0

Dm0C 2jJX0
.˛/j �A;

where m0 D
P

x2 �X0
minfZx. zfˇ/ j zfˇj�X0 6D 0g, and A is the number of irreducible

characters �� 2 �.JX0
.˛// of representations � which are conjugate into N .
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Proof Case (ii) is done in [1, Theorem 2.3] while the proof in case (i) is handled
analogously. The idea is that by combining (6–1), Proposition 6.4, and the previous
two propositions, the calculation of k˛kX0

reduces to a weighted count of characters of
representations �1.M.˛//! PSL2.C/. Note that under our assumptions, JX0

.˛/�

X �
0

and �jJX0
.˛/ is injective.

Finally, for case (iii), Proposition 6.9 implies that JX0
.˛/ � X �

0
and a calculation

similar to that used in case (i) yields the desired conclusion.

8 Proof of Proposition 5.1

We suppose in this section that b1.M /D 1, that neither ˛ nor ˇ is a singular slope for
a closed, essential surface in M , that M.˛/ has a finite fundamental group, and that
M.ˇ/ is either a connected sum of two lens spaces or S1 �S2 . Theorem 3.2 implies
that ˛ is not a boundary slope.

A finite filling slope ˛ is either of C –type or D–type or Q–type or T .k/–type
(1� k � 3) or O.k/–type (1� k � 4) or I.k/–type (1� k � 5; k ¤ 4). We refer to
[9, pages 93–94 and 98] for these definitions. We will show

�.˛; ˇ/�

�
2 if M.ˇ/ŠL2#L3, H1.M /Š Z˚Z=2 and ˛ is of type O.2/;
1 otherwise.

The key relationships between Culler–Shalen seminorms and finite filling classes is
contained in the following result from [9].

Proposition 8.1 Suppose that X0 is a non-trivial curve in XPSL2
.M / and that ˛ is a

finite or cyclic filling slope which is not a boundary slope associated to an ideal point
of X0 .

(1) If ˛ is a cyclic filling slope, then k˛kX0
D sX0

. [11]

(2) If ˛ is a D–type or a Q–type filling slope and X0 is not virtually trivial, then
(i) k˛kX0

� 2sX0
;

(ii) k˛kX0
� kˇkX0

for any slope ˇ such that kˇkX0
¤ 0 and �.˛; ˇ/ �

0 (mod 2).

(3) If ˛ is a T .k/–type filling slope, then k 2 f1; 2; 3g and
(i) k˛kX0

� sX0
C 2;

(ii) k˛kX0
� kˇkX0

for any slope ˇ such that kˇkX0
¤ 0 and �.˛; ˇ/ �

0 (mod k ).

(4) If ˛ is an O.k/–type filling slope, then k 2f1; 2; 4g if H1.M / has no 2–torsion,
k 2 f1; 2; 3g if H1.M / has 2–torsion, and
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(i) k˛kX0
� sX0

C 3;
(ii) k˛kX0

� kˇkX0
for any slope ˇ such that kˇkX0

¤ 0 and �.˛; ˇ/ �

0 (mod k ).

(5) If ˛ is an I.k/–type filling slope, then k 2 f1; 2; 3; 5g and
(i) k˛kX0

� sX0
C 4;

(ii) k˛kX0
� kˇkX0

for any slope ˇ such that kˇkX0
¤ 0 and �.˛; ˇ/ �

0 (mod k ).

We split the proof of Proposition 5.1 into three cases.

Case 1 M.ˇ/¤ P3#P3 is a connected sum of two lens spaces.

Recall that XPSL2
.M.ˇ// � XPSL2

.M / contains exactly Œp
2
�Œq

2
� non-trivial curves

X.j ; k/, where 1 � j � p
2

and 1 � k � q
2

. Let X be the union of these curves and
observe that since ˇ is not a singular slope for any closed essential surface in M ,
Proposition 6.6 implies that

(8–1) sX � s0 D

�
.p� 1/.q� 1/C 1 if p; q even
.p� 1/.q� 1/ otherwise.

By (6–2), k˛kX D �.˛; ˇ/sX . If ˛ is a C –type filling slope, then k˛kX � sX by
Proposition 8.1 (recall that ˛ is not a boundary slope) and therefore �.˛; ˇ/� 1. If it is
a D or Q–type filling slope, then all irreducible representations of �1.M.˛// conjugate
into N . Thus Proposition 7.5 and Proposition 7.6 show that for each x 2 JX .˛/, �.x/
is an irreducible character and k˛kX � sX Cj�.JX .˛//j. On the other hand, Lemma
6.5 shows that if X.j ; k/ is a component of X with j and k relatively prime to p

and q respectively, then it contains the character of an irreducible representation with
image in N if and only if pD 2, and if pD 2, there is a unique such character. Hence
�.˛; ˇ/sX D k˛kX � sX C Œ

p
2
�Œq

2
� < 2sX , and therefore �.˛; ˇ/� 1.

Next assume that ˛ is either a T or O or I –type filling slope. Then (6–2) and
Proposition 8.1 show that

�.˛; ˇ/�

8̂<̂
:

1C 2
sX
� 1C 2

s0
if ˛ is T –type

1C 3
sX
� 1C 3

s0
if ˛ is O–type

1C 4
sX
� 1C 4

s0
if ˛ is I–type.

Combining this inequality with (8–1) shows that �.˛; ˇ/� 1 unless, perhaps,

� .p; q/D .2; 4/; .2; 5/; .3; 3/;�.˛; ˇ/� 2 and ˛ is I –type, or

� .p; q/D .2; 3/;�.˛; ˇ/� 3 and ˛ is I –type, or
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� .p; q/D .2; 3/;�.˛; ˇ/� 2 and ˛ is either T or O –type.

Assume first that one of these cases arises and ˛ is either of type T or I . It is
well-known that

(8–2) H1.M.˛//Š

�
Z=3kj k � 1 and j relatively prime to 6, if ˛ is T –type
Z=j where j is relatively prime to 30, if ˛ is I–type

(see [5] for instance) so that in each of these cases, H1.M.˛// is cyclic. This implies
that H1.M /ŠZ˚Z=n, where n� 1. Then n divides jH1.M.ı/j for each primitive
ı 2H1.@M /. Taking ı D ˛ we see that n divides 3kj , where gcd.j ; 6/D 1 if ˛ is
T –type, and divides j , where gcd.j ; 30/D 1 if ˛ is I –type. On the other hand, n

also divides jH1.M.ˇ//j ŠZ=p˚Z=q , so given the constraints we have imposed on
.p; q/ we see that nD 1. Thus H1.M /Š Z, and so each Dehn filling of M has a
cyclic first homology group. This rules out the possibility that .p; q/D .2; 4/ or .3; 3/.
Consider, then, the cases where .p; q/D .2; 3/ or .2; 5/. There is a basis f�; �g of
H1.@M / such that � is zero homologically in M and � generates H1.M /.

If ˛ is a T –type filling slope, then .p; q/D .2; 3/ and so by our choice of � and �,
(8–2) implies that there are integers a; b such that up to sign, ˛Df˙.3kj�Ca�/g, and
ˇ D f˙.6�C b�/g. Then b is odd and the constraints on j ; k show that �.˛; ˇ/D
j6a� 3kjbj � 1 (mod 2). As �.˛; ˇ/� 2, we have �.˛; ˇ/D 1.

Next suppose that ˛ is an I –type filling class. Then .p; q/D .2; 3/ or .2; 5/. By (8–2)
there are integers a; b such that ˛D f˙.j�Ca�/g, and ˇD f˙.2q�Cb�/g. Then b

is relatively prime to 2q and since gcd.j ; 30/D 1, �.˛; ˇ/D j2qa� jbj is relatively
prime to 2q as well. When q D 5, this shows that �.˛; ˇ/ is odd, and therefore as
�.˛; ˇ/ � 2 in this case, we have �.˛; ˇ/ D 1. Finally when q D 3, it shows that
�.˛; ˇ/ is relatively prime to 6, and therefore as �.˛; ˇ/� 3, we have �.˛; ˇ/D 1.

Finally suppose that�.˛; ˇ/D2, .p; q/D .2; 3/, and ˛ has type O . Now H1.M.˛//Š

Z=2j , where j is relatively prime to 6 [5], and we can argue as above to see that either
H1.M /ŠZ or H1.M /ŠZ˚Z=2. When H1.M /ŠZ, we can find, as above, a basis
�; � of H1.@M / such that � is zero homologically in M and � generates H1.M /.
There are integers a; b such that ˛Df˙.2j�Ca�/g, and ˇDf˙.6�Cb�/g, where a

and b are odd. Since j is odd as well, we have 2��.˛; ˇ/D j6a�2bj j � 0 (mod 4).
This contradiction shows that this case does not arise.

Thus in all cases, �.˛; ˇ/� 2 and �.˛; ˇ/� 1 unless, perhaps, H1.M /Š Z˚Z=2,
M.ˇ/ŠL2#L3 and M.˛/ has type O.k/ for some k . This completes the proof in
Case 1.

Case 2 M.ˇ/D P3#P3 .
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We show that in this case, �.˛; ˇ/� 1. First we need some auxiliary results.

Note that there is a 2–fold cover pW �Mˇ ! M obtained by restricting the cover
S1�S2!P3#P3ŠM.ˇ/. Let �ˇW �1.M /!Z=2 be the associated homomorphism.
Note also that j@ �Mˇj 2 f1; 2g.

Proposition 8.2 Suppose that M.ˇ/ Š P3#P3 and that ˇ D f˙bg is not a strict
boundary slope. Suppose that X0 �X.M / is a curve which is not virtually trivial and
that kˇkX0

¤ 0. Then there is an index 2=j@ �Mˇj sublattice �L of H1.@M / containing
b such that kˇkX0

� k˛kX0
for each slope ˛ D f˙ag, where a 2 �L and k˛kX0

¤ 0.
In particular, kˇkX0

� 2sX0
=j@ �Mˇj.

Proof The proof is identical to the proof of [5, Theorem 2.1(a)]. In that result a
non-strict boundary slope ˇ0 on @M was given along with a cover BM.ˇ0/!M.ˇ0/,
where �1.BM.ˇ0// is a finite cyclic group. Let p0W

�M ! M be the associated
cover of M and T be a boundary component of �M . It was shown in [5] that if�LD .p0jT /�.H1.T //. that for any slope f˙ag such that a 2 �L and k˛jX0

¤ 0, we
have kˇ0kX0

� k˛kX0
. The reader can readily verify that the proof works equally

well in the case where �1.BM.ˇ0// is an infinite cyclic group, the situation we are
considering. Let T be a boundary component of the double cover pW �Mˇ ! M .
If we now set �L D .pjT /�.H1.T /, then for any slope ˛ D f˙ag such that a 2 �L
and k˛jX0

¤ 0, we have kˇkX0
� k˛kX0

. The index of p�.H1.T // in H1.@M / is
2=j@ �Mˇj, so the conclusions of the proposition hold.

Corollary 8.3 Suppose that M.ˇ/Š P3#P3 , ˇ is not a singular slope for a closed
essential surface in M , and let C � Z=2 �Z=2 D �1.M.ˇ// be the unique cyclic
subgroup of index 2. Then �1.@M / is sent to a non-trivial subgroup of C under
the natural homomorphism �1.M / ! �1.M.ˇ//. Moreover, for any curve X0 �

XPSL2
.M / which is not virtually trivial, we have kˇkX0

� sX0
.

Proof Let ˇ� be a dual class to ˇ and choose elements b and b� of H1.@M / with
ˇ D f˙bg and ˇ� D f˙b�g. Identify �1.@M / with H1.@M /, and let 
 denote the
image of b� in �1.M.ˇ//. If 
 2 D 1, then fbC2nb� D 0 and so kbC 2nb�kX0

D 0

for each n 2 Z. It follows that k � kX0
D 0, and so Proposition 6.4 implies that ˇ

is a singular slope for a closed essential surface in M , contrary to our hypotheses.
Thus 
 has infinite order in Z=2�Z=2D �1.M.ˇ//. It follows that 
 2 C and since
b 2 �1.@M / maps to the identity in �1.M.ˇ// we see that �1.@M / is sent to C .
Now C is the kernel of the homomorphism �1.M.ˇ//! Z=2 defining the cover
S1 �S2! P3#P3 , and thus �1.@M / � ker.�ˇ/. It follows that j@ �Mˇj D 2. As ˇ
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is not a strict boundary slope (cf Corollary 3.4), the previous proposition shows that
kˇkX0

� sX0
.

Lemma 8.4 Let XM �XSL2
.M / 1 be the canonical curve and suppose that the slope

ı is not a strict boundary class and satisfies kıkXM
D sM . Suppose that ˛ is a slope

such that �1.M.˛// is either finite or cyclic or Z=2�Z=2. Then either

(1) ˛ is a singular slope for a closed essential surface in M , or

(2) �.˛; ı/� 2 and if �.˛; ı/D 2, then ˛ is of T .k/;O.k/ or I.k/–type, where
k � 3.

Proof Suppose that ˛ is not a singular slope for a closed essential surface in M .
Then Theorem 3.2 and Corollary 3.4 imply that it is not a strict boundary slope and
therefore we can apply [5, Proposition 7.2] to see that �.˛; ı/� 2 when �1.M.˛// is
either finite or cyclic. When it is Z=2�Z=2, an SL2.C/ version of Proposition 8.2
shows that k˛kXM

� 2sM and it follows from the basic properties of k � kM [5] that
�.˛; ı/� 2.

Suppose, then, that �.˛; ı/D 2 and let � D f˙tg be a dual slope to ı D f˙dg. Then
˛Df˙.ndC2t/g for some n2Z. Hence �.˛; ı/� 0 (mod 2) and thus if ˛ is of type
D or Q, or T .k/;O.k/; I.k/, where k � 2, or �1.M.˛//Š Z or Z=2�Z=2, then
k˛kM �kıkM D sM (cf Proposition 8.1 and Proposition 8.2). But it was shown in [11,
Section 1.1] that if the distance between two slopes of minimal non-zero Culler–Shalen
norm is 2, then both are strict boundary slopes. Hence these cases do not arise and so
˛ is of type T .k/;O.k/ or I.k/–type, where k � 3.

Proof of Proposition 5.1 when M.ˇ/DP3#P3 . Since neither ˛ nor ˇ is a singular
slope for a closed essential surface in M , they are not strict boundary slopes (see
Theorem 3.2, Corollary 3.4). Thus Corollary 8.3 and Lemma 8.4 show that kˇkM D sM

and �.˛; ˇ/�2 with equality implying that ˛ has type T .k/;O.k/; I.k/, where k�3.
Since H1.M.ˇ//ŠZ=2˚Z=2, H1.M IZ=2/�Z=2˚Z=2 and so H1.M.˛/IZ=2/¤
0. Hence ˛ is neither T or I type (cf (8–2)). We must consider the possibility that it
is of type O.k/, where k D 3; 4.

Let X0 � XPSL2
.Z=2 �Z=2/ D XPSL2

.M.ˇ// � XPSL2
.M / be the unique non-

trivial curve. According to Proposition 6.6, k � kX0
¤ 0 and further, sX0

� 2. It is easy
to verify that the only irreducible representations of �1.M /! PSL2.C/ with finite
image whose character lies in X0 are ones with dihedral image. Since O –type groups

1 SL2.C/–character varieties and SL2.C/ Culler–Shalen seminorms are defined in a manner similar
to their PSL2.C/ counterparts and possess similar properties. We refer the reader to [11].
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admit only one such character [5, Lemma 5.3], it follows from Proposition 7.6 that
�.˛; ˇ/sX0

D k˛kX0
� sX0

C 1. Thus �.˛; ˇ/� 1 as claimed, which completes the
proof in Case 2.

Case 3 M.ˇ/D S1 �S2 .

We prove �.˛; ˇ/D 1.

By Theorem 3.2, ˇ is not a strict boundary slope and so Proposition 8.1 implies
kˇkM D sM . Thus Lemma 8.4 shows that �.˛; ˇ/� 2, and if it equals 2, then ˛ has
type T .q/;O.q/ or I.q/, where q � 3. We assume below that �.˛; ˇ/D 2 in order
to arrive at a contradiction. Let i W @M !M be the inclusion.

Observation 8.5 Let ˇ D f˙bg. There is an integer n � 1 such that H1.M / Š

Z˚Z=n in such a way that i�.b/D .0; 1/. Moreover, there is a dual slope ˇ�Df˙b�g

for ˇ such that i�.b
�/D .n; 0/.

Proof Since ˛ is a finite filling slope, the first Betti number of M is 1. Since
H1.M.ˇ//ŠZ, we have H1.M /ŠZ˚Z=n, where n� 1 and i�.b/ generates Z=n,
say i�.b/D .0;x1/2Z˚Z=n. Let b�

1
be any dual class for b and observe that since i�

has rank 1, we have i�.b
�
1
/D .d; xk/ for some integers d¤0 and k . Then b�Db�

1
�kb

is also dual to b and satisfies i�.b
�/D .d;x0/. Let � 2H1.M / correspond to .1;x0/. By

our assumptions, there is a generator � 2H2.M; @M / such that @.�/D nb . Lefschetz
duality implies that j� � �j D 1. Hence jd j D ji�.b�/ � �j D jb� � @.�/j D n. It follows
that i�.b

�/D˙n� , which completes the proof of Observation 8.5.

Since �.˛; ˇ/ D 2, we can write a D 2b� C mb (up to sign) for some m 2 Z.
A homological calculation now shows that jH1.M.˛//j D 2n2 and so ˛ cannot
have type T or I . Thus it has type O and so �1.M.˛// Š O� � Z=j , where
O� is the binary octahedral group and j is an integer relatively prime to 6. Then
Z=2j Š H1.M.˛// Š Z=2n2 . It follows that n2 D j and therefore n is odd. [9,
Lemma 3.1 (4)] now shows that ˛ has type O.4/. Thus the image of �1.@M / under the
representation � , given by composition �1.M /!�1.M.˛//!O24�PSL2.C/, has
image Z=4. As �.˛/D˙I and �.˛; ˇ/D 2, �.ˇ/ is the square of an element of order
4 in O24 . Thus it lies in the kernel of the surjective homomorphism �W O24!D3 ,
which sends any element of order 4 to an element of order 2. Then � ı � induces a
surjective homomorphism of �1.M.ˇ//Š Z onto the non-Abelian group D3 , which
is impossible. Thus it must be that �.˛; ˇ/� 1.
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9 Proof of Proposition 5.2

Here we suppose that ˇ is a strict boundary slope but is not a singular slope for a
closed, essential surface in M . It follows from Theorem 3.2 and Corollary 3.4 that
M.ˇ/ is not homeomorphic to P3#P3 or S1 �S2 . The proof of Proposition 5.2 is
therefore a consequence of the following result which, unlike Proposition 5.3, does not
assume that M.˛/ admits a geometric decomposition.

Proposition 9.1 Suppose that M.ˇ/ is a connected sum Lp#Lq of two lens spaces,
where 2� p � q and 2< q , and that M.˛/ is an irreducible very small 3–manifold.
Then

�.˛; ˇ/�

8̂<̂
:

3 if .p; q/ 2 f.2; 3/; .2; 5/; .3; 5/g;

2 if .p; q/ 2 f.2; 4/; .3; 3/; .3; 4/; .5; 5/g;

1 otherwise:

Proof Let X0 be one of the curves X.j ; k/�XPSL2
.Z=p�Z=q/DXPSL2

.M.ˇ//�

XPSL2
.M /, where j ; k are relatively prime to p; q respectively. Suppose that x 2

JX0
.˛/. Proposition 7.5 shows that x 2X �

0
and �.x/ is a simple point of XPSL2

.M /

which is the character of an irreducible representation � whose image is a finite
subgroup of PSL2.C/. In particular, this implies that if �.x/D �� , where � 2 N ,
then � must have dihedral image.

LetX �XPSL2
.M / be the union of the curvesX.j ; k/�XPSL2

.M.ˇ//�XPSL2
.M /,

where j ; k are relatively prime to p; q . If d is the number of components of X , then
Proposition 6.6 shows that

sX �

�
2d if p D 2

4d if p > 2:

Recall from (6–2) that �.˛; ˇ/D k˛kX =sX . On the other hand, Proposition 7.6 and
our discussion above show that k˛kX D sX C 2jJX .˛/j �A, where A is the number
of dihedral characters in �.JX .˛//. According to Lemma 6.5(2) we have AD d if
p D 2 and AD 0 if p > 2. If we set nD jJX .˛/j, then we have

(9–1) �.˛; ˇ/D 1C
2n�A

sX

�

(
1C 2n�d

2d
if p D 2;

1C 2n
4d

if p > 2.

We have d D
�p

2

��q
2

�
, and n is determined by Lemma 6.5 since �.x/ is the character

of an irreducible representation with finite image for each x 2 JX .˛/. Checking each
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case, we see that

�.˛; ˇ/�

8̂̂̂̂
<̂
ˆ̂̂:

5 if .p; q/D .2; 3/;

3 if .p; q/ 2 f.2; 5/; .3; 5/g;

2 if .p; q/ 2 f.2; 4/; .3; 3/; .3; 4/; .5; 5/g;

1 otherwise.

Thus it will suffice to prove that �.˛; ˇ/� 3 when .p; q/D .2; 3/.

Suppose that �.˛; ˇ/ D 5 and .p; q/ D .2; 3/. Lemma 6.5 and Inequality (9–1)
imply that sX D 2. Proposition 6.2 (1) shows that for every point �� 2 JX .˛/,
�.�1.@M // D Z=5. In particular, �.�1.M // has an element of order 5. The only
finite, non-cyclic subgroups of PSL2.C/ which have such elements are I60 and Dk ,
where k � 0 (mod 5). Therefore Lemma 6.5 shows that 10 D 5sX � sX C 5 D 7,
which is impossible.

Suppose next that �.˛; ˇ/D 4. Lemma 6.5 and Inequality (9–1) imply that sX � 3.
Let ˇ� be a dual slope to ˇ and recall that kˇ�kX D sX .

If sX D 2, then 8 D �.˛; ˇ/sX D k˛kX D 2C 2n � A, where A 2 f0; 1g. Thus
n D 3;m D 0 and so �.JX .˛// consists of three elements, where at most two are
I60 –characters, at most one is an O24 –character, and at most one is a T12 –character.
Proposition 6.2(1) shows that for every point �� 2 JX .˛/, �.�1.@M //DZ=2 or Z=4.
Since only the O24 –character has elements of order 4, there are at least two characters
�� in JX .˛/ such that �.�1.@M //D Z=2. This implies that 4D 2sX D k2ˇ

�kX �

sX C 4D 6, which is impossible.

Finally suppose that sX D 3. Then 12 D �.˛; ˇ/sX D k˛kX D 3C 2n�A, where
A 2 f0; 1g. Hence nD 5, and �.JX .˛// consists of 5 elements – two I60 –characters,
one O24 –character, one T12 –character, and one D3 –character. A similar argument to
that of the previous paragraph shows that 6D 2sX D k2ˇ

�kX � sX C 7D 10, which
is impossible. This completes the proof.

10 Proof of Proposition 5.3

In this section we suppose that b1.M /D 1, neither ˛ nor ˇ is a singular slope for a
closed essential surface in M , M.˛/ is an irreducible, very small 3–manifold which
admits a geometric decomposition, and M.ˇ/ is either S1 �S2 or a connected sum
of lens spaces Lp#Lq , where 2� p � q . We must show �.˛; ˇ/� 2.

The reader will verify that given our assumptions on M.˛/, one of the following
possibilities holds. Either M.˛/
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� is a torus bundle over S1 with monodromy A 2 SL2.Z/ such that j tr.A/j � 2;
or

� semi-fibres over I with semi-fibre a torus; or

� admits a Seifert structure with base orbifold S2.3;3;3/;S2.2;4;4/, or S2.2;3;6/.

We treat these cases separately.

Case 1 M.˛/ fibres over the circle with monodromy A for which j tr.A/j � 2.

Note that ˛ is the rational longitudinal class in this case so that M.ˇ/ ¤ S1 � S2 .
Thus M.ˇ/ Š Lp#Lq for some 2 � p � q . According to Proposition 9.1 we may
assume that either �.˛; ˇ/D 3 and .p; q/2 f.2; 3/; .2; 5/; .3; 5/g or M.ˇ/ŠP3#P3 .
We consider the former case first.

Let X0 be a curve in XPSL2
.M.ˇ/�XPSL2

.M /. Since X0 is a ˇ–curve, it follows
from Lemma 6.8 that, for each x 2 JX0

.˛/ and � 2R.X0/\ t�1.�.x//, we have that
�.ˇ�/ has order 3. Proposition 7.2(2) implies that there are no reducible characters
in �.JX0

.˛//. Hence if �� 2 �.JX0
.˛//, then the image of � is either contained in

N or is T12 (Proposition 7.1). Since q > 2 it follows from (6–2), Lemma 6.5, and
Proposition 6.6 that

�.˛; ˇ/�

(
1 when .p; q/¤ .2; 3/; .3; 3/

2 when .p; q/D .2; 3/; .3; 3/
;

contradicting our assumption that �.˛; ˇ/D 3.

Next suppose that M.ˇ/ Š P3#P3 . It follows that H1.M / Š Z˚A, where A is
either (i) Z=2 or (ii) Z=2˚Z=2. Now H1.M.˛// is infinite, so ˛ is the slope of the
rational longitude in H1.@M /, say ˛D f˙ag and i�.a/D � 2A, where i W @M !M

is the inclusion. If ˛�Df˙a�g is any dual slope to ˛ we have i�.a
�/D d�C� , where

d � 1; � generates a free factor of H1.M / and � 2A. Write ˇD f˙.maCna�/g and
observe that �.˛; ˇ/ D jmj. A simple computation shows that since H1.M.ˇ// Š

Z=2˚Z=2, we must have mD˙1 in case (ii) and therefore �.˛; ˇ/D 1. Similarly
in case (i) we must have �.˛; ˇ/ � 2. Both cases contradict our hypotheses, so we
also have �.˛; ˇ/� 2 when q D 2.

Case 2 M.˛/ semi-fibres over the interval.

Subcase 2.1 M.ˇ/ŠLp#Lq ¤ P3#P3 .
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Again, according to Proposition 9.1, we may assume that either �.˛; ˇ/ D 3 and
.p; q/ 2 f.2; 3/; .2; 5/; .3; 5/g.

Let ˇ� be a dual class to ˇ . According to Lemma 6.8, for each x 2 JX0
.˛/ and

� 2R.X0/\ t�1.�.x//, we have that �.ˇ�/ has order 3. Proposition 7.3 shows that
there are no reducible characters in �.JX0

.˛//. Thus if �� 2 �.JX0
.˛//, the image of

� is either contained in N or is O24 by Proposition 7.1. Since q � 3, Lemma 6.5 and
Proposition 7.6 show that �.˛; ˇ/� 2, contradicting our assumption that �.˛; ˇ/D 3.

Subcase 2.2 M.ˇ/Š P3#P3 .

This case follows from [21, Theorem 1.2].

Subcase 2.3 M.ˇ/D S1 �S2 .

There is an exact sequence 1!Z˚Z! �1.M.˛//!Z=2�Z=2! 1 and therefore
a non-trivial curve X0 � XPSL2

.Z=2 �Z=2/ � XPSL2
.M.˛// � XPSL2

.M /. As
we have assumed that ˛ is not a singular slope for a closed, essential surface in M ,
Proposition 6.4 implies that k � kX0

¤ 0. Since we have assumed that ˇ is not a
singular slope for a closed, essential surface in M , the same proposition implies that
JX0

.ˇ/�X �
0

. Thus Proposition 8.1 (1) shows that �.˛; ˇ/D 1.

Case 3 M.˛/ admits a Seifert structure with base orbifold S2.3; 3; 3/;S2.2; 4; 4/,
or S2.2; 3; 6/.

Our proof in this case depends on obtaining good estimates for the value of a Culler–
Shalen seminorm on ˛ . To that end, let X0 � XPSL2

.M / be a non-trivial curve and
suppose that � is a character contained in �.JX0

.˛//. Since b1.M / D 1, � D �� ,
where � 2 R.X0/ is either irreducible or has a non-Abelian image by Lemma 6.7
and further, �.˛/D˙I . Thus � factors through �1.M.˛//. Now apply [1, Lemma
3.1] to see that � factors through �.r; s; t/, the orbifold fundamental group of the
base orbifold S2.r; s; t/ of M.˛/ (a � b � c ). The irreducible characters �.r; s; t/
were calculated in [2, Propositions 5.2, 5.3, 5.4]. If �� is reducible, � induces a
representation � W �.r; s; t/! PSL2.C/ whose image is upper-triangular and non-
Abelian. Write �.r; s; t/D hx;y W xa;yb; .xy/ci and observe that up to conjugation,
�.x/ is diagonal of order a and the .1; 2/ entry of �.y/ is 1. The reader will verify
that as �.xy/ is of finite order, there is at most one possibility for the character of � .
Thus, we have proven the following Lemma.

Lemma 10.1 (1) �.3; 3; 3/ has exactly one irreducible PSL2.C/–character and it
is the character of a representation with image T12 . It has exactly one reducible
PSL2.C/–character which can lie on a non-trivial curve in XPSL2

.M /.
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(2) �.2; 4; 4/ has exactly three irreducible PSL2.C/–characters and they are the
characters of representations with dihedral images D2;D4 and D4 . It has
exactly one reducible PSL2.C/–character which can lie on a non-trivial curve
in XPSL2

.M /.

(3) �.2; 3; 6/ has exactly two irreducible PSL2.C/–characters, one corresponding
to a representation with image D3 , and the other to a representations with
image T12 . It has exactly one reducible PSL2.C/–character which can lie on a
non-trivial curve in XPSL2

.M /.

Proposition 7.6 now yields the estimates we need.

Proposition 10.2 Suppose that X0 is a non-trivial curve in XPSL2
.M / and that ˛ is

a slope on @M such that M.˛/ admits a Seifert structure with base orbifold S2.3; 3; 3/,
S2.2; 4; 4/, or S2.2; 3; 6/. If ˛ is not a boundary slope associated to an ideal point of
X0 , then

k˛kX0
�

�
sX0
C 4 if M.˛/ has base orbifold S2.3; 3; 3/

sX0
C 5 if M.˛/ has base orbifold S2.2; 3; 6/ or S2.2; 4; 4/:

Subcase 3.1 M.ˇ/ŠLp#Lq , where 2� p � q .

Let X0 DX.1; 1/�XPSL2
.Z=p �Z=q/DXPSL2

.M.ˇ//�XPSL2
.M /. Since we

have assumed that ˇ is not a singular slope for any closed essential surface in M ,
(6–2) and Proposition 6.6 imply that

(10–1) �.˛; ˇ/D
k˛kX0

sX0

where sX0
�

�
2 if p D 2

4 if p > 2:

Hence Proposition 10.2 yields �.˛; ˇ/ � 2 when p > 2. Similarly, if there are no
irreducible characters in �.JX0

.˛//, then k˛kX0
� sX0

C 2 (cf Lemma 6.5), which
yields the desired distance estimate. Assume, then, that pD 2 and �.JX0

.˛// contains
at least one irreducible character.

Subsubcase 3.1.1 2D p D q .

In this case, all irreducible characters in X0 are characters of representations which
conjugate into N and therefore the base orbifold of M.˛/ cannot be S2.3; 3; 3/ (Propo-
sition 10.2). When it is S2.2; 3; 6/, we obtain k˛kX0

� sX0
C3 and so �.˛; ˇ/� 2 by

(10–1). When it is S2.2; 4; 4/, Corollary 8.3 implies that the natural homomorphism
�1.M /! �1.M.ˇ// sends �1.@M / to the unique index 2 cyclic subgroup C of
Z=2�Z=2 (since ˇ is not a singular slope for a closed essential surface in M ). Thus
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�1.@M / is sent to ˙I under the diagonal representation whose character lies on X0 .
It follows that �.JX0

.˛// does not contain a reducible character (cf Proposition 6.2).
Thus Lemma 6.5 and Lemma 10.1 show that k˛kX0

� sX0
C3, which yields the desired

result.

Subsubcase 3.1.2 2D p < q .

In this case, X0 contains exactly one character of an irreducible representation with
image contained in N (Lemma 6.5). Thus, when the base orbifold of M.˛/ is
S2.2; 4; 4/ we have k˛kX0

� sX0
C3 and therefore �.˛; ˇ/�2. When it is S2.3; 3; 3/

we have k˛kX0
� sX0

C 4 so that �.˛; ˇ/� 3. If this distance is 3, then X0 contains
the character of a representation with image T12 and therefore q D 3 (Lemma 6.5).
Then H1.M.ˇ// Š Z=6 so that H1.M / Š Z˚ Z=n, where n divides 6. There
is a primitive element � 2 H1.@M /, unique up to sign, which is sent to a torsion
element of H1.M /. Let d be its order. The argument used in the proof of Observation
8.5 shows that there is a dual class � 2 H1.@M / to � which is sent to .d; xj / 2

Z˚Z=n D H1.M /. If ˇ D a�C b� in H1.@M /, then a homological calculation
shows that 6 D jH1.M.ˇ//j D jdanj. As d divides n and 6 is square-free, we
have d D 1. Hence � is homologically trivial in M and therefore if ˛ D s�C t�,
H1.M.˛//ŠZ=s˚Z=n. Since this group surjects onto H1.�.3; 3; 3//ŠZ=3˚Z=3,
both s and n are divisible by 3. Thus t is relatively prime to 3 and the same holds for
a as 6D jH1.M.ˇ//j D jdanj D janj. Hence �.˛; ˇ/D jat � bsj 6� 0 (mod 3), and
we are done in this case.

Finally assume that the base orbifold of M.˛/ is S2.2; 3; 6/. Since �.JX0
.˛// contains

the character of an irreducible representation, Lemma 10.1 and Lemma 6.5 imply
that q D 3. From Proposition 10.2 we have k˛kX0

� sX0
C 5 so that �.˛; ˇ/ � 3.

Note moreover, that if �.˛; ˇ/ D 3, then sX0
D 2 and �.JX0

.˛// consists of a T12

character and a reducible character (cf Proposition 7.6 and Proposition 10.2). Now
H1.M.ˇ//Š Z=6, so H1.M /Š Z˚Z=n, where n divides 6. The argument of the
last paragraph shows that there is a basis �; � for H1.@M / such that if i W @M !M is
the inclusion, then i�.�/ generates a Z–summand of H1.M /, while i�.�/D 0. Thus
for a primitive class ı D s�C t� we have H1.M.ı// Š Z=s˚Z=n. In particular,
taking ˇ D p�C q� we have Z=6Š Z=p˚Z=n, so gcd.p; n/D 6 and pnD 6.

There is a presentation

�1.M.˛//Š hx;y; h j x2
D h�i ;y3

D h�j ; .xy/6 D h�k ; h centrali
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where i; j ; k are relatively prime to 2; 3; 6 respectively. Thus H1.M.˛// is presented
by the matrix

AD

0@ 2 0 6

0 3 6

i j k

1A :
Since the gcd of the minors of size 1 of A is 1, as are those of size 2, while the
determinant of A is 6.k � 2j � 3i/ � 0 (mod 12), we have H1.M.˛// Š Z=12l ,
where l � 0. On the other hand if ˛ D s�C t�, then H1.M.˛//Š Z=s˚Z=n, so
gcd.s; n/D 1 and snD 12l . These two conditions are not mutually compatible when
n 2 f2; 6g, so n 2 f1; 3g is odd. But then 3D�.˛; ˇ/D jat � sbj � 0 (mod 2), which
is impossible. Hence we must have �.˛; ˇ/� 2.

Subcase 3.2 M.ˇ/D S1 �S2 .

In this case,ˇ is the slope of the rational longitude inH1.@M/ and thereforeb1.M.˛//D

0. It follows that M.˛/ is not Haken [20, VI.13], and therefore Theorem 3.2 implies
that ˛ is not a boundary slope. Note, moreover, that as the Euler number e.M.˛//2Q
is the obstruction to the existence of a horizontal surface in M.˛/, and since a Seifert
manifold of the form we are considering admits a horizontal surface if and only if its
first Betti number is 1 [20, VI.15], we have e.M.˛//¤ 0.

Consider the canonical curve XM � XPSL2
.M / defined by a complete hyperbolic

structure [9, Section 9]. Denote by BM the largest k � kM –ball which contains no
non-zero elements of H1.@M / in its interior and recall that sM is the radius of BM .
We have assumed that ˇ is not a singular slope associated to a closed, essential surface
in M , and therefore Theorem 3.2 implies that ˇ is not a strict boundary slope. It
follows from Proposition 8.1 (1) that kˇkM D sM . Indeed, [11, Section 1] implies
that Zx.fˇ/�Zx.fı/ for each x 2 �X0 and ı 2H1.@M /. According to Proposition
10.2 we have

(10–2) k˛kXM
�

�
sM C 4 if M.˛/ has base orbifold S2.3; 3; 3/

sM C 5 if M.˛/ has base orbifold S2.2; 3; 6/ or S2.2; 4; 4/:

Lemma 10.3 Let ˇ D f˙bg and ˇ� D f˙b�g Then

(1) b 2 @BM but is not a vertex. No class of distance 2 from b lies on @BM .

(2) If ˙.c1b C d1b�/;˙.c2b C d2b�/; : : : ;˙.ckb C d1b�/ 2 H1.@M / are the
primitive classes associated to the vertices of BM , then

Pk
iD1 jdi j � sM .
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(3) If sM D 2, then �.˛; ˇ/ � k˛kM
sM

. Further, if sM � 3, then �.˛; ˇ/ < t k˛kM
sM

,
where

t D

8<:
6
5

if sM D 3
4
3

if sM D 4

2 if sM � 5:

Proof As ˇ is not a strict boundary slope and M.ˇ/ has a cyclic fundamental group,
kˇkM D sM (Proposition 8.1(1)) and ˇ is not a vertex of BM . It is shown in [5,
Lemma 6.4] that if there is a class of distance 2 from ˇ lies on @BM , then ˇ would
be a vertex of BM . This proves part (1).

It was shown in [11, Section 1.4] that there is a homomorphism �x W H1.@M /! Z
such that …x.f
 / D j�x.
 /j. Since j�x.ıx/j D 0, it is simple to see that for each

 2 H1.@M /, j�x.
 /j D e�.
; ıx/ for some fixed integer e � 1. In particular, we
have e D…x.fˇ/=�.ˇ; ıx/. Hence dx D�.ˇ; ıx/ divides …x.fˇ/ and for each 

we have …x.f
 /D

�.
;ıx/
�.ˇ;ıx/

…x.fˇ/. Summing over all the ideal points yields

(10–3) k
kM D
X

x

�.
; ıx/

�.ˇ; ıx/
…x.fˇ/:

In particular, sM D kˇkM D
P

x …x.fˇ/ �
P

x jdxj. This proves part (2) of the
lemma.

It follows from part (1) that if xbCyb� 2BM , then jyj< 2, and therefore part (3) of
the lemma holds for sM � 5. Let

t0 D sup fy j xbCyb� 2 BM g

and observe that ˛ D f˙.pbC qb�/g, where q D�.˛; ˇ/. Since sM=k˛kM˛ 2BM

we have �.˛; ˇ/D q � t0k˛kM=sM . Furthermore, we have strict inequality if there
is a unique xbCyb� 2 BM with y D t0 , since in this case equality would imply that
˛ is the slope of a vertex of BM and therefore a strict boundary slope. To complete
the proof of (3), we must show that t0 is given as in the statement of the lemma when
sM 2 f2; 3; 4g.

First note that there is a vertex of BM of the form x0bC t0b� . Let z be an ideal point
of XM associated to a strict boundary class cxbC dxb� D vz 2H1.@M /. The vertex
of BM associated to vz is given by sM=kvzkM vz . We explain below how to calculate
the maximum value taken on by the b�–coordinate of sM=kvzkM vz 2 @BM , where z

varies over all ideal points of XM .

If XM has k ideal points z1; z2; : : : ; zk , then …z1
.fˇ/;…z2

.fˇ/; : : : ;…zk
.fˇ/ gives

a partition of sM D kˇkM into k positive integers. Let vzi
D cibCdib

� and recall
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that di divides …zi
.fˇ/. If we have prior knowledge of the integers …zi

.fˇ/; ci ; di ,
then we can calculate the values kvzi

kM using (10–3), and therefore we can determine
the vertices of BM . In general though, we are not given these values, so we proceed
as follows.

Fix an integer k � 2, a partition .…1;…2; : : : ;…k/ of sM , and a sequence of classes
vi D cib C dib

� , where di � 1 is a divisor of …i . Set kvik D
P

j¤i
�.vi ;vj /

�.b;vj /
…j

and vi D
sM

kvik
vi . Next we consider the polygon in H1.@M IR/ whose vertices are

˙v1;˙v2; : : : ;˙vk . We discard all polygons which are not convex, or which contain
a non-zero element of H1.@M / in their interior, or whose maximal b�–coordinates
are at least 2, since such polygons cannot be the boundaries of a possible BM . In this
way we obtain a list of the possibilities for BM for each value of sM . In particular,
we can determine an upper bound for their maximal b�–coordinate. For instance when
sM D 2 or 3, an SL2.C/ version of the calculation is contained in [5, Lemma 6.5].
The case sM D 4 is handled similarly from this one observes that part (3) of the lemma
holds. This completes the proof of the lemma.

Note that Inequality (10–2) and part (3) of the previous lemma show that

(10–4) �.˛; ˇ/� 3

We must show that this inequality is strict. Denote the base orbifold of M.˛/ by
S2.r; s; t/. By Observation 8.5, there is a dual slope ˇ� D f˙b�g for ˇ D f˙bg, an
integer n� 1, and an isomorphism H1.M /Š Z˚Z=n such that if i W @M !M is
the inclusion, then

i�.b
�/D .n;x0/; i�.b/D .0;x1/:

Let � 2H1.M / correspond to .1; 0/, so that i�.b
�/D n� . Choose integers t;u such

that
˛ D f˙.tb�Cub/g:

Then �.˛; ˇ/D jt j.

Lemma 10.4 There is an isomorphism H1.M.˛// Š Z=.u; n/˚ Z= tn2

.u;n/
, where

Z=.u; n/ and Z= tn2

.u;n/
are generated, respectively, by the images of tn

.u;n/
�C u

.u;n/
i�.ˇ/

and � . Furthermore,

(1) if .r; s; t/D .3; 3; 3/, then .u; n/D 3. Hence �.˛; ˇ/D jt j 6� 0 (mod 3).

(2) if .r; s; t/D .2; 4; 4/, then .u; n/D 2 and n� 0 (mod 4). Hence �.˛; ˇ/D jt j
is odd.

(3) if .r; s; t/D .2; 3; 6/, then gcd.u; n/D 1 and tn2 is divisible by 12.

Geometry & Topology, Volume 12 (2008)



274 Steve Boyer, Marc Culler, Peter B Shalen and Xingru Zhang

Proof Since e.M.˛// ¤ 0, H1.M.˛// is finite. Moreover, it follows from our
conventions that it is presented by the matrix

�
tn 0
u n

�
. Thus

H1.M.˛//Š Z=.u; n/˚Z= tn2

.u;n/
;

where the factors are generated as claimed. Comparison of this isomorphism with the
calculations of the previous lemma yields the remaining conclusions of this one.

Part (1) of the previous lemma and Inequality (10–4) show that �.˛; ˇ/ � 2 when
.r; s; t/ D .3; 3; 3/. In order to deal with the remaining two cases we suppose that
�.˛; ˇ/D 3 in order to derive a contradiction. Setting ˇ D f˙bg and ˇ� D f˙b�g

we have
˛ D˙.3b�Cub/g

so that gcd.3;u/D 1.

Assume that .r; s; t/ D .2; 3; 6/. Then Lemma 10.4 (3) implies that 3n2 is even
and gcd.u; n/ D 1, so n is even and u is odd. Thus gcd.u; 6/ D 1. Consider the
representation �W �1.M /!PSL2.C/ with image D3 constructed as a composition of
surjective homomorphisms �1.M /! �1.M.˛//! �orb

1
.S2.2; 3; 6//D�.2; 3; 6/!

D3 � PSL2.C/. Now �.�1.@M // � D3 is Abelian, hence cyclic of order 1; 2

or 3. It cannot have order 1, as otherwise it would factor through �1.M.ˇ// Š

Z. Thus it has order 2 or 3. Since �.˛/ D ˙I and juj D �.˛; ˇ�/ is relatively
prime to 6, �.�1.@M /// is generated by �.b�/. Thus the image of b� generates the
image of �1.@M / under the composition of � with the Abelianization homomorphism
�W D3! Z=2. Now � ı � factors through H1.M / and b� is divisible by 2 in this
group (Observation 8.5). Thus � ı �.b�/D 0 and therefore �.b�/ 2 ŒD3;D3�D Z=3.
But then as �.˛; ˇ/D 3, � factors through �1.M.ˇ//Š Z, which is impossible. We
conclude that �.˛; ˇ/� 2.

Finally assume that .r; s; t/D .2; 4; 4/. There is a dual class ˇ�
0
D f˙b�

0
g for ˇ such

that
˛ D f˙.bC 3b�0 /g:

Set
b�1 D bC b�0 :

Lemma 10.5

(1) b is sent to a generator of a Z=2 factor of H orb
1
.S2.2; 4; 4// Š Z=2˚ Z=4

under the composition H1.@M /!H1.M /!H orb
1
.S2.2; 4; 4//.

(2) If x 2 JXM
.˛/, then fˇ�

1
.x/D 0.
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Proof (1) Lemma 10.4 implies that in our situation,

H1.M.˛//Š Z=2˚Z=3n2

2
;

where Z=2 and Z=3n2

2
are generated, respectively, by the images of ! D 3n

2
� C

u
.u;n/

i�.b/ and � . It follows that ! is sent to an element of order 2 in

H orb
1 .S2.2; 4; 4//Š Z=2˚Z=4;

and � is sent to an element of order 4. Lemma 10.4 also shows that u
.u;n/

is odd, so the

image of b in H orb
1
.S2.2; 4; 4// coincides with that of !� 3�n

2
� for some �D˙1. It

follows that � and b generate H orb
1
.S2.2; 4; 4//, so the image of b is non-zero there,

and since n is divisible by 4, the image of 2b in H orb
1
.S2.2; 4; 4// is zero. Thus (1)

holds.

(2) Let x 2JXM
.˛/ and set �.x/D�� , where �2R.XM /. As ˛Df˙.�2bC3b�

1
/g,

we see that

(10–5) �.b�1 /
�3
D �.b/2:

We observed in the opening paragraph of case 3 that � factors through a representa-
tion � W �.2; 4; 4/! PSL2.C/. If � is reducible, there is a diagonal representation
�0W �.2; 4; 4/! PSL2.C/ with the same character as � . Since �0 factors through
H1.�.2; 4; 4//Š Z=2˚Z=4, (10.5.1) shows that �0 sends the image of b�

1
to ˙I .

It follows that (2) holds in this case.

Assume next that � is irreducible. Lemma 10.1 shows that the image of � is either
D2 or D4 and so as �1.M.ˇ// Š Z, we have �.b/ ¤ ˙I . On the other hand, by
(10.5.1) it suffices to show that �.b/2 D˙I . This is obvious if �� is a D2 –character
so suppose that it is a D4 –character. Write �.2; 4; 4/D hx;y j x2D y4D .xy/4D 1i

and D4 D hz; w j z
2 D w4 D .zw/2 D 1i � PSL2.C/. There are two characters

of representations �.2; 4; 4/! PSL2.C/ with image D4 and they are represented
by the homomorphisms �1; �2W �.2; 4; 4/!D4 , where �1.x/D z; �1.y/D w and
�2.x/D zw; �2.y/Dw . As these two representations differ by an automorphism of
D4 , it suffices to prove that the image of b in D4 under �1 has order 2.

Suppose otherwise. Then its image has order 4 and so b is sent to y�v 2�.2; 4; 4/,
where � 2 f˙1g and v 2 ker.�1/. Now ker.�1/ is normally generated in �.2; 4; 4/
by .xy/2 , so vD…k

iD1
ui.xy/2�i u�1

i , where ui 2�.2; 4; 4/ and �i 2 f˙1g. Now x ,
resp. y , projects to an element xx , resp. xy , of order 2, resp. 4, in H1.�.2; 4; 4// and
therefore as b is sent to .�C 2

P
i �i/xy in this group, it also has order 4 there. But

this contradicts part (1) of the lemma. Therefore b must be sent to an element of order
2 in D4 .
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Now we complete the proof of our current case. We set aD bC 3b� , so ˛ D f˙ag.

Suppose first that sM D 2. Then the only roots of zfˇ on �XM are the two discrete,
faithful characters of �1.M /. It follows that zfˇ.x/¤0 for each x 2JXM

.˛/. But then
part (2) of the previous lemma shows that JXM

.˛/� JXM
.ˇ�

1
/ and so putting these

observations together with Lemma 10.3 (3) we conclude that kˇ�
1
kM � k˛kM � 3sM .

Then 1
3
kˇ�

1
kM � sM . Now 1

7
a lies on the line in H1.@M IR/ which passes through

b and 1
3
b�

1
and consideration of its position there shows that k1

7
˛kM � sM D 2. But

this contradicts k˛kM � sM C 5D 7, so sM ¤ 2.

Next suppose that sM D 3. If x 2 JXM
.˛/ is such that �� D �.x/ is irreducible,

the image of � is finite and non-Abelian (Lemma 10.1), from which we deduce
fˇ.��/¤ 0. Thus part (2) of the previous lemma shows that x 2 JXM

.ˇ�
1
/. It follows

that kˇ�
1
kM � sM C 3D 2sM . Thus Œ1

2
b�

1
; b�

0
�\ int.BM /D ∅. But 1

4
a 2 Œ1

2
b�

1
; b�

0
�

so that 1
4
k˛k � sM D 3. But then 8 D sM C 5 � k˛Mk � 12, which is impossible.

Hence sM ¤ 3.

Next note that sM ¤ 4 since Lemma 10.3 (3) shows that �.˛; ˇ/ < 4
3
.9

4
/D 3.

Suppose, then, that sM � 5 so that k˛kM � sM C5� 2sM , or equivalently, a
2
2BM .

The line segment Œ�b; a
2
�, which passes through b�

0
, is contained in BM . Therefore it

is contained in @BM and hence ka
2
kM D sM . But then 2sM D k˛kM � sM C 5. It

follows that sM D5. We noted above that ˛ is not a boundary slope, so a
2

is not a vertex
of BM , nor is bC 2b�

0
by Lemma 10.3(1). Thus there is a vertex v0 D x0bCy0b�

0

of the edge of @BM containing Œ�b; a
2
� with 2< y0

x0
< 2. Let c0bC d0b�

0
2H1.@M /

be the boundary class which is a rational multiple of v0 . As sM D 5, part (2) of
Lemma 10.3 shows that jd0j 2 f3; 4g and therefore since d0

c0
D

y0

x0
, either 3

jc0j
2 .2; 3/

or 4
jc0j
2 .2; 3/, which is impossible. This final contradiction shows that �.˛; ˇ/� 2

when .r; s; t/D .2; 4; 4/. (Lemma 10.4 (2) then shows that we have �.˛; ˇ/D 1 in
this case).

11 Characteristic subsurfaces associated to a reducible Dehn
filling

In this section we develop the background results needed to prove Proposition 5.4. We
assume that M is a compact, connected, orientable, simple 3–manifold with torus
boundary and M.ˇ/ is a connected sum of two non-trivial lens spaces one of which is
not P3 .

Recall that an embedded 2–sphere in a 3–manifold is called essential if it does not
bound a 3–ball. Since M.ˇ/ is a connected sum of two non-trivial lens spaces, a
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standard cut-paste argument shows that there is an essential 2–sphere yF in M.ˇ/

such that F DM \ yF is a connected properly embedded essential planar surface F in
M with boundary slope ˇ . Any such surface F is separating in M since M.ˇ/ has
zero first Betti number. Any such surface F is not a semi-fibre since otherwise M.ˇ/

would be a connected sum of two P3 ’s. Among all such surfaces, we assume that F

has been chosen to have the minimal number of boundary components. Set mD j@F j.
Note that m is an even number since F is separating. Since M is a simple manifold,
we have m� 4. The planar surface F splits M into two components, XC and X� ,
and yF separates M.ˇ/ as yXC and yX� each of which is a punctured lens space. We
may and shall assume that yXC is not P3 . We use � to denote an element in f˙g.

We call a properly embedded annulus .A; @A/� .X �;F / essential if its inclusion is
not homotopic rel @A to a map whose image lies in F . The minimality of mD j@F j

has the following useful consequence.

Lemma 11.1 Suppose that .A; @A/ � .X �;F / is a properly embedded essential
annulus. The boundary of A splits yF into an annulus B and two disks N;N 0 . Then
the number of boundary components of F which lie in N equals the number of
boundary components of F which lie in N 0 .

Proof Since yX � has zero first Betti number, the annulus A separates yX � into two
pieces W and V , where @W is a 2–sphere and @V is a torus.

Let n; n0 and b be the number of boundary components of F which lie in N;N 0 and
B respectively. We may suppose that n � n0 . If b D 0, then @V �M and so V is
a solid torus in which the winding number of B is at least 2 (since A is an essential
annulus and thus not parallel to B ). It follows that a regular neighborhood in M.ˇ/ of
N [V is a punctured lens space whose boundary S is an essential 2–sphere in M.ˇ/.
Hence the number of components of S \ @M is at least m. That is, 2n�mD nCn0 .
Hence n� n0 , which implies that desired result.

On the other hand if b> 0, then @W is inessential in M.ˇ/ and thus W is a 3–ball. If
the 2–sphere boundary S1 of a regular neighborhood U in X � of N [V is inessential
in M.ˇ/, it follows that U is also a 3–ball. But this is impossible as it would imply
that yX � is a 3–ball. Hence S1 is essential in M.ˇ/. Since it intersects @M in 2nCb

components we have 2nCb �mD nCbCn0 , ie n� n0 . This completes the proof.

Each essential annulus A properly embedded in .X �;F / separates the punctured lens
space yX � , and hence X � . Let V .A/ be the component of yX �

A
such that V .A/\ yF

is an annulus E.A/. We call a pair of disjoint essential annuli A and A0 properly
embedded in .X �;F / and .X �0 ;F / nested if either @A0 �E.A/ or @A�E.A0/.
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The only Seifert fibred spaces contained in a simple manifold are solid tori. This fact
has the following useful application.

Lemma 11.2 If A and A0 are disjoint essential annuli properly embedded in .X �;F /

and .X �0 ;F /, then they are nested.

Proof Let c0; c1 be the boundary components of A and c0
0
; c0

1
those of A0 . We

assume first that � D �0 . If A;A0 are not nested, then V .A/\ V .A0/ D ∅ and we
can number the boundary components of A and A0 in such a way that they divide
the 2–sphere yF into five components whose interiors are pairwise disjoint: a disk
N bounded by c1 ; the annulus B D E.A/ bounded by c1 and c0 ; an annulus E

bounded by c0 and c0
0

; an annulus B0 D E.A0/ bounded by c0
0

and c0
1

; and a disk
N 0 bounded by c0

1
. Let n D jN \ @F j; b D jB \ @F j and define e; b0; n0 similarly.

According to Lemma 11.1 we have nD eC b0C n0 and n0 D nC bC e . It follows
that b D e D b0 D 0 and therefore V .A/;E;V .A0/ �M . Since M is simple, both
V .A/ and V .A0/ are solid tori and as A and A0 are essential in .X �;F /, the winding
numbers of B in V .A/ and B0 in V .A0/ are at least 2 in absolute value. It follows
that a regular neighbourhood of V .A/[E [ V .A0/ in M is Seifert fibred with an
incompressible torus for boundary. But the simple manifold M does not contain such
a Seifert fibred space. Thus A;A0 must be nested.

Assume, then, that � ¤ �0 . The case where E.A/\E.A0/D ∅ can be shown to be
impossible as in the previous paragraph. Next suppose that E.A/\E.A0/¤ ∅ but
neither E.A/�E.A0/ nor E.A0/�E.A/. We number the boundary components of
A and A0 in such a way that they divide the 2–sphere yF into five components whose
interiors are pairwise disjoint: a disk N bounded by c1 ; an annulus B bounded by
c1 and c0

0
; an annulus E bounded by c0

0
and c0 ; an annulus B0 bounded by c0 and

c0
1

; and a disk N 0 bounded by c0
1

. Let nD jN \ @F j and define b; e; b0; n0 similarly.
Lemma 11.1 implies that b D b0 D 0 and thus A0 may be isotoped in .X �0 ;F / so that
@A0 D @A. Then T DA[A0 is a torus in M which must be compressible as m> 2.
As T is not contained in a 3–ball, it bounds a solid torus V in M . It is easy to see
that V D V .A/[ V .A0/ and so E D V .A/\ V .A0/ � F , ie e D 0. But then E is
isotopic through V to either A or A0 , which contradicts the essentiality of these two
annuli. Hence it must be that either @A0 �E.A/ or @A�E.A0/ and thus A;A0 are
nested.

Lemma 11.3 If A and A0 are disjoint essential annuli properly embedded in .X �;F /

and .X �0 ;F / such that a boundary component of A is isotopic in F to a boundary
component of A0 , then � D �0 and A and A0 are parallel in X � .
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Proof By the previous lemma, A and A0 are nested. Without loss of generality we
may suppose that @A � E.A0/. Let c0; c1 be the boundary components of A, and
c0

0
; c0

1
those of A0 , where the indices are chosen in such a way that the four curves

c0 , c1 , c0
0

and c0
1

divide yF into five components whose interiors are pairwise disjoint:
a disk N bounded by c0

0
; an annulus E � F bounded by c0 and c0

0
; an annulus B

bounded by c0 and c1 ; an annulus E0 bounded by c1 and c0
1

; and a disk N 0 bounded
by c0

1
. Let n be the number of components of N \ @M . Define b; e0; n0 similarly

so that nC bC e0C n0 D m. Lemma 11.1 shows that e0 D 0. Now it must be that
� D �0 as otherwise A0 can be isotoped in .X �0 ;F / so that its boundary equals that
of A. The argument in the last paragraph of the proof of the previous lemma shows
that this situation cannot arise. Thus � D �0 . If b D 0, then A0 [E [B [E0 is a
torus bounding a solid torus V in M . Since A0 � V and is not parallel into F , it
must be parallel into A. Thus the lemma holds. On the other hand, if b ¤ 0, then
S1 DN [E[A[E0[N 0 is an inessential 2–sphere in M.ˇ/ and therefore bounds
a 3–ball W in yX � . It follows that A and A0 are parallel in X � through W . This
completes the proof.

Let .†��; ˆ
�
�/� .X

�;F / be the characteristic Seifert pair of .X �;F / and .†�; ˆ�/�
.X �;F / be the characteristic I –bundle pair it contains. We shall use �� to denote the
free involution on ˆ� induced by I fibres of †� . Let ˆ�j denote the j th characteristic
subsurface with respect to the pair .M;F / as defined in [3, Section 5]. Note that ˆ�

1

is the large part of ˆ� and that the involution �� restricts to a free involution on ˆ�
1

,
which will still be denoted as �� . Let .†�

1
; ˆ�

1
/ be the corresponding I –bundle pair.

Lemma 11.4 .†C; ˆC/ is a product I –bundle pair, ie there is no embedded Möbius
band .B; @B/� .†C; ˆC/. In particular, ˆC ¤ F .

Proof Suppose otherwise that .B; @B/ � .†C; ˆC/ is an embedded Möbius band.
Then @B bounds a disk N in yF . The union of N and B is an embedded projective
plane in yXC . A regular neighborhood of this projective plane in yXC is a punctured
P3 . This implies that yXC itself is a punctured P3 , contrary to our assumptions.

Lemma 11.5 Suppose that .B; @B/� .X�;F / is a properly embedded Möbius band.
Then @B cannot be isotoped into ˆC

1
.

Proof Let A0 be the essential annulus in .X�;F / which is the frontier of a regular
neighbourhood of B in X� . If @B can be isotoped into ˆC

1
, then the previous lemma

shows that there is an essential annulus A, properly embedded in .XC;F /, whose
boundary contains @B . After a small isotopy of A rel @B we can assume that A and
A0 are disjoint. But this contradicts Lemma 11.3 since a boundary component of A is
isotopic to a boundary component of A0 . Thus @B cannot be isotoped into ˆC

1
.
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A root torus in .X �;F / is a solid torus ‚�X � such that ‚\F is an incompressible
annulus in @‚ whose winding number in ‚ is at least 2 in absolute value.

Lemma 11.6

(1) Let ‚ be a component of †�� and set ˆD‚\F . If .‚;ˆ/ is not an .I; @I/–
bundle, then ‚ is a root torus.

(2) Let ˆ1 and ˆ2 be distinct components of ˆ�� and E � F an annulus whose
boundary consists of a component c1 of @ˆ1 and a component c2 of @ˆ2 . Then
after possibly renumbering ˆ1; ˆ2 , there are an annulus E0 � E in F with
c1 � @E

0 and components †1; †2 of †�� such that †1 is a product I –bundle
component of †�

1
containing ˆ1 and †2 is a root torus such that †2\F �E0 .

Moreover, either
(i) E DE0 , †1\F Dˆ1[ˆ2 , ��.c1/D c2 and †2\F � int.E/, or

(ii) E ¤E0 , †2\F Dˆ2 � int.E0/.

In particular, there is a root torus in X � whose intersection with F lies in E .

Proof

(1) Since simple manifolds contain no Seifert submanifolds with incompressible
boundaries, ‚ is a solid torus. Now ˆ is a disjoint union of essential annuli
B1;B2; : : : ;Bn . If n > 1, then Lemma 11.3 shows that nD 2 and .‚;ˆ/Š
.S1 � I � I;S1 � I � @I/, contrary to our hypotheses. Thus nD 1 and from
the defining properties of the characteristic Seifert pair we see that the winding
number of ˆD B1 in ‚ is at least 2 in absolute value.

(2) Let †1; †
0
2

be the components of †�� which contain ˆ1; ˆ2 respectively. For
j D 1; 2 there is a unique annulus .Aj ; @Aj / � .frX � .†j /; @ˆj / which is
essential in .X �;F / and which contains cj . If A1 D A2 , then †1 D †

0
2

and
so †1 \ F � ˆ1 [ˆ2 has at least two components. It follows that †1 is a
product I –bundle with †1\F Dˆ1[ˆ2 (cf part (1) of the lemma). Clearly
��.c1/ D c2 . Moreover, A2 [E is a torus in M which bounds a solid torus
V � X � . Since A2 is essential, it is isotopic to a component †2 of †�� with
†2\F � int.E/. Thus (i) holds.
Assume, then, that A1 ¤ A2 . According to Lemma 11.3, A1 and A2 are
parallel in X � . Hence there is another annulus E� in F such that @.A1[A2/D

@.E [E�/. Lemma 11.2 implies that at least one of the .†j ; †j \ F /, say
.†1; †1\F /, is an .I; @I/–bundle. Then .†2; †2\F / cannot be an .I; @I/–
bundle as otherwise the product region N between A1 and A2 could be used
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to build an .I; @I/–bundle structure on †1[N [†2 , contrary to the defining
properties of †�� . Thus .†2; ˆ2/ is a root torus. Set E0 DE[ .†2\F /[E�

and observe that (ii) holds.

A boundary component of ˆ� or ˆ�j is called an inner boundary component if it is
not isotopic in F to a component of @F , otherwise it is called an outer boundary
component. Note that every boundary component c of ˆ�

1
is a boundary component

of an essential annulus in .†�
1
; ˆ�

1
/� .X �;F / whose boundary is c and ��.c/. The

following result is a consequence of Lemma 11.1.

Lemma 11.7 A simple closed curve c in F is an inner, resp. outer, boundary com-
ponent of ˆ� if and only if ��.c/ is an inner, resp. outer, boundary component of
ˆ� .

By Lemma 11.7 and Lemma 11.3, we can and shall normalize ˆ�j to have the property
that if a component of @F is isotopic to a boundary component of ˆ�j , then it is already
contained in ˆ�j .

Recall from [3, Section 7] that a subsurface T of F is said to be tight if the frontier of
T in F is a connected simple closed curve. Thus a component of ˆ�

1
is tight if and

only if it has exactly one inner boundary component. It follows from Lemma 11.7 that
�� permutes the tight components of ˆ�

1
. Note also that a component ˆ0 of ˆ�

1
left

invariant by the free involution �� has an even number of inner boundary components
since ��jˆ0 reverses orientation. In particular, no tight component of ˆ�

1
is invariant

under �� . Thus they are paired by this involution.

Lemma 11.8 If ˆ�
1
¤ F and �.F / D �.ˆ�

1
/, then ˆ�

1
consists of a pair of tight

components T1 , T2 and it contains @F . Moreover, ��.T1/D T2 .

Proof Note that we also have �.F / D �.ˆ�/ and ˆ� ¤ F . Obviously ˆ� has at
least two tight components T1;T2 with ��.T1/D T2 . If cj denotes the inner boundary
component of Tj , then we also have ��.c1/ D c2 . Since �.F / D �.ˆ�/, there is
an annulus E � int.F / such that E \ˆ� D @E and E \ T1 D c1 . According to
Lemma 11.6 (2), there is a product I –bundle component of †� which intersects
F in T1 [ ��.T1/ D T1 [ T2 and @E D c1 [ ��.c1/ D c1 [ c2 . It follows that
F D T1[c1

E [c2
T2 as claimed by the lemma.

Suppose that c is a simple closed curve in F . We will say that c sweeps out an
essential annulus in .X �;F / if there is an essential annulus in .X �;F / having a
boundary component isotopic to c .
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Lemma 11.9 Let c be an essential simple closed curve contained in ˆ� . If c sweeps
out an essential annulus A in .X �;F /, then A is isotopic in .X �;F / to an essential
annulus in the component of †� which contains c . In particular, @A is isotopic in F to
c [ ��.c/.

Proof Let ˆ0 be the component of ˆ� which contains c and †0 the component of †�

containing ˆ0 . The annulus .A; @A/ is homotopic in .X �;F / into a component ‚ of
the characteristic Seifert pair .†��; ˆ

�
�/. If ‚D†0 , then it is easy to see that the lemma

holds. On the other hand if ‚¤†0 , then c is isotopic in F to the core of an annulus
E�F whose boundary consists of a component of @ˆ0 and a component of @.‚\F /.
Without loss of generality we can suppose that c D @E \ˆ0 . Then c sweeps out an
annulus A1 � frX � .†0/ which is essential in .X �;F /. Set c0 D @E n c � @.‚\F /

and let A2 be the essential annulus contained in frX � .‚/ which is swept out by c0 . By
Lemma 11.3, A1 is parallel to A2 in X � and by Lemma 11.6, .‚;‚\F / is a root
torus. Since A is homotopic into ‚ but not into F , it is isotopic to A2 , and therefore
to A1 �†

� . This completes the proof of the lemma.

Lemma 11.10 Let c be an essential simple closed curve in F . The following condi-
tions are equivalent:

(1) c sweeps out an essential annulus in .X �;F /;

(2) c is isotopic in F to a simple closed curve c0 in ˆ� such that the geometric
intersection number of c0 and ��.c0/ is 0.

Proof From Lemma 11.9 it is clear that (1) implies (2).

If condition (2) holds for c , then, by choosing a negatively curved metric on F , we
may assume that either c0 and ��.c0/ are disjoint or that c0 is invariant under �� . In
the first case, there is an essential annulus in .X �;F / with boundary curves c0 and
��.c

0/. In the second case there is an embedded Möbius band .B; @B/� .X �;F / with
boundary curve c0 . The frontier of a regular neighborhood of B in X � is an essential
annulus with both boundary curves isotopic to c0 , and hence to c .

Lemma 11.11 If c is an inner boundary component of ˆ�j which is isotopic to a
simple closed curve in ˆ��

jC1
, then c sweeps out an essential annulus in .X��;F /.

Proof Let c0 be a simple closed curve in ˆ��
jC1

which is isotopic to c . Since ���.c0/
lies in ˆ�j , and since c0 is isotopic to a boundary curve of ˆ�j , it follows that the
geometric intersection number of c0 and ���.c0/ is zero. Now apply Lemma 11.10.
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Recall from [3, Proposition 5.3.1] that for each � 2 f˙g and j � 0, there is a home-
omorphism h�j W ˆ

�
j!ˆ

.�1/jC1�
j , unique up to isotopy, which satisfies some useful

properties. In particular,

(11–1) h�2j W ˆ
�
2j

Š
�!ˆ��2j for each � 2 f˙g and each j � 0:

Moreover,

h�2jC1W ˆ
�
2jC1

Š
�!ˆ�2jC1 is a free involution for each � 2 f˙g and each j � 0:

For any compact surface S , �.S/ denotes the Euler characteristic of S .

Proposition 11.12 Suppose that j � 2 and that �.ˆ�j /D�.ˆ
�
jC1

/. Then ˆ�j Dˆ
�
jC1

.

Proof If ˆ�j ¤ˆ
�
jC1

, there is an annulus .E; @E/� .ˆ�j n int.ˆ�
jC1

/; @ˆ�
jC1

/. We
show that this leads to a contradiction.

Consider the homeomorphism h�j W ˆ
�
j!ˆ

.�1/jC1�
j . The image of ˆ�

jC1
under this

homeomorphism is, by [3, Proposition 5.3.5], ˆ.�1/j �
1

^ˆ
.�1/jC1�
j . Thus the image

E0 of E under this map satisfies

E0 � .F n int.ˆ.�1/j �
1

//^ˆ
.�1/jC1�
j :

Let c0 be a boundary component of E0 . Then c0 is a boundary component of ˆ.�1/j �
1

and thus is a boundary component of an annulus A which is properly embedded
and essential in .X .�1/j �;F /. On the other hand, c0 is isotopic in F to a curve in
ˆ
.�1/jC1�
j and so since j � 2, Lemma 11.11 implies that c0 is a boundary component

of an essential annulus .A1; @A1/� .X
.�1/jC1�;F /. But this contradicts Lemma 11.3.

Hence ˆ�j Dˆ
�
jC1

.

Corollary 11.13 Fix � 2 f˙1g and suppose that �.ˆ�
2kC1

/ < 0 for some k � 1. Then

�.ˆ�3/ < �.ˆ
�
5/ < � � �< �.ˆ

�
2kC3/:

Proof Apply Proposition 11.12 and [3, Proposition 5.3.9].

Lemma 11.14 Suppose that .X �;F / is not a twisted I –bundle pair. Then �.F / <
�.ˆ�

3
/.

Proof Suppose otherwise that �.F / D �.ˆ�
3
/. According to the previous lemma

we have ˆ�
2
D ˆ�

3
and therefore [3, Proposition 5.3.9] implies that ˆ�

1
¤ ˆ�

2
. But

since �.ˆ�
1
/ D �.ˆ�

2
/, there is an annulus .E; @E/ � .ˆ�

1
n int.ˆ�

2
/; @ˆ�

2
/. Let

Geometry & Topology, Volume 12 (2008)



284 Steve Boyer, Marc Culler, Peter B Shalen and Xingru Zhang

E1 D ��.E/ � ˆ
�
1

and observe that E1 � F n int.ˆ��
1
/ while @E1 � @ˆ

��
1

. By
Lemma 11.6 there is a root torus V1 � X�� such that V1 \F �E1 . Let A1 be the
essential annulus in .X��;F / given by @V1 n .V1\F /.

Next observe that since X � is not a twisted I –bundle but �.F / D �.ˆ�
1
/, there is

an annulus E2 � F n int.ˆ�
1
/ such that @E2 � @ˆ

�
1

. Another application of Lemma
11.6 produces a root torus V2 �X � such that V2\F �E2 . Let A2 be the essential
annulus in .X��;F / given by @V2 n .V2 \ F /. Since V1 \ F � E1 � ˆ�

1
and

V2\F �E2 �F n int.ˆ�
1
/, we may suppose that V1\V2 is empty. But then, A1;A2

are disjoint essential annuli which are not nested, contrary to Lemma 11.2. Thus we
must have �.F / < �.ˆ�

3
/.

Lemma 11.15 Any reduced homotopy in .M;F / has length at most m�2 if .X�;F /
is not a twisted I –bundle pair or has length at most m� 1 if .X�;F / is a twisted
I –bundle pair. Furthermore, if a reduced homotopy in .M;F / has length m� 1, then
it starts and ends on the X� side.

Proof First note that, by [3, Corollary 5.3.8], �.ˆ�j / is even for each j � 1 odd.
Applying this together with Corollary 11.13 and Lemma 11.14 we see that ˆ�

m�1
is

the empty set if .X �;F / is not a twisted I –bundle pair. So the length of a reduced
homotopy in .M;F / is at most ��.F /Dm�2 if the homotopy starts on a side which
is not a twisted I –bundle pair, and at most 1��.F /Dm� 1 if the homotopy starts
on a side which is a twisted I –bundle. In the latter case, the homotopy starts on the
X� side by Lemma 11.4, and finishes there since m is even.

It follows from the definition of ˆ�j that if .X�;F / is a twisted I –bundle pair, then
ˆ�

2j
Dˆ�

2jC1
and ˆC

2jC1
DˆC

2jC2
for each j � 0.

Lemma 11.16 If .X�;F / is a twisted I –bundle pair and ˆC
1

is not empty, then
�.ˆC

1
/ < �.ˆC

3
/.

Proof Suppose otherwise. Then �.ˆC
2
/D �.ˆC

3
/. By Proposition 11.12, we have

ˆC
2
D ˆC

3
. Thus ˆC

1
D ˆC

2
D ˆC

3
. But this is impossible as it contradicts [3,

Proposition 5.3.9].

Proposition 11.17 If �.F / < �.ˆC
1
/, then any reduced homotopy in .M;F / has

length at most m� 3.
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Proof First assume that .X�;F / is a twisted I –bundle pair. It follows from Lemma
11.16, Corollary 11.13 and the assumption �.F / < �.ˆC

1
/ that ˆC

m�3
is the empty

set. Hence a reduced homotopy in .M;F / has length at most m� 4 if it starts on XC

side and length at most m� 3 if it starts on X� side.

Suppose, then, that .X�;F / is not a twisted I –bundle pair. If �.ˆC
1
/ < �.ˆC

3
/, then

arguing as in the previous paragraph yields the desired conclusion. Suppose, then, that
�.ˆC

1
/D�.ˆC

3
/. Then ˆC

2
DˆC

3
by Proposition 11.12. It follows from the definition

of the characteristic subsurfaces that ˆ�
2jC1

D ˆ�
2jC2

and ˆC
2j
D ˆC

2jC1
for each

j � 1. Now Corollary 11.13 and the condition �.F / < �.ˆC
1
/ imply that ˆC

m�1
is

the empty set. Since m� 1 is an odd number, ˆC
m�2
DˆC

m�1
is the empty set. But

ˆ�
m�2

is homeomorphic to ˆC
m�2

(cf (11–1)) and thus ˆ�
m�3
Dˆ�

m�2
is the empty

set. Therefore the length of a reduced homotopy in .M;F / is at most m� 4 if the
homotopy starts on the X� side and therefore at most m� 3 in general.

Corollary 11.18 If there is a reduced homotopy in .M;F / with length at least m� 2,
then ˆC

1
consists of a pair of tight components and contains @F . Further, ˆ�

1
is either

a twisted I –bundle or consists of a pair of tight components and contains @F .

Proof By Proposition 11.17, we have �.F / D �.ˆC
1
/. By Lemma 11.4 ˆC

1
¤ F .

Now apply Lemma 11.8 to see that ˆC
1

consists of a pair of tight components and
contains @F .

If ˆ�
1

is not a twisted I –bundle, we may exchange XC and X�

12 Proof of Proposition 5.4

Recall that we are assuming that ˇ is a strict boundary slope, M.ˇ/ is a connected sum
of two non-trivial lens spaces, one of which is not P3 , and M.˛/ admits a �1 –injective
immersion of a torus. We will use the method of [3] to show that �.˛; ˇ/� 4.

Let V˛ be the filling solid torus used in forming M.˛/. As in [3] we obtain a map
hW T!M.˛/ from a torus T to M.˛/ such that

(1) h�1.V˛/ is a non-empty set of embedded disks in T and h is an embedding
when restricted on h�1.V˛/;

(2) h�1.F / is a set of arcs or circles properly embedded in the punctured torus
QD T n h�1.V˛/, where F is the planar surface given in Section 11;

(3) If e is an arc component of h�1.F /, then hW e!F is an essential (immersed)
arc;
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(4) If c is a circle component of h�1.F /, then c does not bound a disk in Q and
hW c!F is an essential (immersed) 1–sphere.

For any subset s of T , we use s� denote its image under the map h. Denote the
components of @.h�1.V˛// by a1; : : : ; an so that a�

1
; : : : ; a�n appear consecutively on

@M . Note again that a1; : : : ; an are embedded in @M and each of these curves has
slope ˛ . Denote the components of @F by b1; : : : ; bm so that they appear consecutively
in @M . We fix an orientation on Q and let each component ai of @Q have the induced
orientation. Two components ai and aj are said to have the same orientation if a�i
and a�j are homologous in @M . Otherwise, they are said to have different orientations.
Similar definitions are defined for the components of @F . Since Q, F and M are all
orientable, one has the following rule.

Parity rule An arc component e of h�1.F / in Q connects components of @Q with
the same orientation (resp. opposite orientations) if and only if the corresponding e� in
F connects components of @F with opposite orientations (resp. the same orientation).

We define a graph � on the torus T by taking h�1.V˛/ as (fat) vertices and taking arc
components of h�1.F / as edges. Note that � has no trivial loops, ie no 1–edge disk
faces. Also note that each a�i intersects each component bj in @M in exactly �.˛; ˇ/
points. If e is an edge in � with an endpoint at the vertex ai , then the corresponding
endpoint of e� , is in a�i \bj for some bj , and the endpoint of e is thus given the label
j . So when we travel around ai in some direction, we see the labels of the endpoints
of edges appearing in the order 1; : : : ;m; : : : ; 1; : : : ;m (repeated �.˛; ˇ/ times). It
also follows that each vertex of � has valence m�.˛; ˇ/.

Suppose that e and e0 are two adjacent parallel edges of � . Let R be the bigon face
between them, realizing the parallelism. Then .R; e[ e0/ is mapped into .X �;F / by
the map h for some � . Moreover, hjR provides a basic essential homotopy between
the essential paths hje and hje0 (cf [3]). We may and shall assume that R� D h.R/ is
contained in the characteristic I –bundle pair .†�

1
; ˆ�

1
/ of .X �;F /. We may consider

R as e� I and assume that the map hW R!†�
1

is I –fibre preserving.

A face f of � is said to lie on the X � side if f � is contained in X � . Every face of
� lies on either the XC side or the X� side. Since F separates M , if two faces of �
share a common edge, then the two faces will lie on different sides of F .

The torus @M is cut by @F into mD 2g parallel annuli. We denote these annuli by
B1; : : : ;Bm so that @Bi D bi [ biC1 for i D 1; : : : ;m� 1 and @Bm D bm [ b1 . We
may assume that B1 is contained in X� . Then for each odd i , Bi is contained in X�

and for each even i , Bi is contained in XC . So @X� D F [B1[B3[ � � � [B2g�1

and @XC D F [B2[B4[ � � � [B2g , both being closed surface of genus g .
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The complement of the interior of F in the essential 2–sphere yF is a set of m disjoint
meridian disks of the attached solid torus V˛ . These disks cut the solid torus V˛ into m

pieces, denoted H1; : : : ;Hm , such that each Hi is a 2–handle attached to X� (when
i odd) or to XC (when i even) along Bi .

Suppose that the characteristic I –bundle pair .†C
1
; ˆC

1
/ � .XC;F / is a connected

trivial I –bundle containing all Bi with i even, ie ˆC
1

is a pair of tight components T1

and T2 including all components of @F . This happens when the length of a reduced
homotopy in .M;F / is at least m� 2 by Corollary 11.18. Let y†C

1
be †C

1
with all

the 2–handles Hi , i even, attached along Bi . Then y†C
1

is an I –bundle over the disk
yT1 , where yT1 is the disk in yF whose intersection with F is the tight component T1

of ˆC
1

. Write y†C
1
D yT1 � Œ0; 1�. Let D1=2 D

yT1 � f1=2g. Let U be the union of y†C
1

and a regular neighborhood of yF in yXC . Obviously U is a once punctured solid torus
with D1=2 as a meridian disk. The torus boundary of U must bound a solid torus V in
XC . That is, the once punctured lens space yXC is the union of U and V along their
torus boundary. Hence the core curve of U carries a generator of the first homology
group of yXC when given an orientation. We record this property in the following
lemma which will be used later in the proof of Lemma 12.8.

Lemma 12.1 If the length of a reduced homotopy in .M;F / is at least m� 2, then
the core curve of the punctured solid torus U given in the proceeding paragraph carries
a generator of the first homology group of the non-trivial punctured lens space yXC and
the disk D1=2 is a meridian disk of U .

Definition 12.2 A pair of adjacent parallel edges fe; e0g of � is called an S –cycle if

� the two edges connect two vertices v and v0 with the same orientation;

� the label of the endpoint of e at v is j and the label of the endpoint of e at v0

is j C 1 (note all calculations concerning labels are defined mod .m/);

� the label of the endpoint of e0 at v is j C 1 and the label of the endpoint of e0

at v0 is j .

An S –cycle fe; e0g is called an extended S –cycle if the two edges e and e0 are the
two middle edges in a family of four adjacent parallel edges of � , see Figure 1.

Lemma 12.3 Suppose that two vertices v and v0 of � have the same orientation and
are connected by a family of n parallel consecutive edges e1; : : : ; en of � .

(1) If n>m=2, then there is an S –cycle in this family of edges.
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v v0

e

e0 R

j�1

j

jC1

jC2 j�1

j

jC1

jC2

Figure 1: An extended S –cycle.

(2) If n> m
2
C 1, then either there is an extended S –cycle in this family of edges or

both fe1; e2g and fen�1; eng are S –cycles.

(3) If n> m
2
C 2, then there is an extended S –cycle in this family of edges.

Proof Part (1) is [11, Corollary 2.6.7]. Parts (2) and (3) follow from part (1) directly.

Lemma 12.4 If fe; e0g is an S –cycle in � , then the bigon face R between them
is mapped into .†�

1
; ˆ�

1
/ under the map h. Moreover, there is properly embedded

Möbius band B �X� such that @B is contained in ˆ�
1

.

Proof Assume R� is contained in †�
1

and that the S –cycle has labels j and j C 1.
Then e� and e0� are paths in F connecting the two components bj and bjC1 of @F .
Recall that Bj denotes the annulus in @M with boundary bj [ bjC1 , and �� denotes
the involution of ˆ�

1
. We have ��.bj / D ��.bjC1/ and ��.e�/ D ��.e0�/ and hence

the connected set bj [ e�[ e
0�[ bjC1 is invariant under �� . There is a ��–invariant

regular neighborhood N of bj [ e�[ e
0�[ bjC1 contained in ˆ�

1
and it is simple to

see that there is a ��–invariant essential simple closed curve in N . Thus there is a
properly embedded Möbius band B � X � such that @B is contained in N . Therefore
by Lemma 11.4, we have � D�.

Lemma 12.5 There is no extended S –cycle in � .

Proof Suppose that fe; e0g is an extended S –cycle of � as shown in Figure 1. If R

denotes the bigon face between e and e0 , Lemma 12.4 shows that R� is contained
in †�

1
. From Figure 1, one easily sees that the set bj [ e�[ e0�[ bjC1 is contained

in ˆC
1

and so the same may be assumed true for its regular neighborhood N used
in the proof of Lemma 12.4. It follows that the boundary of the Möbius band in X�

constructed in the proof of Lemma 12.4 is contained in ˆC
1

. But Lemma 11.5 prohibits
this possibility. Thus � contains no extended S –cycles.
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Lemma 12.6 Suppose that m � 6. If two vertices v and v0 of � have the same
orientation, then they cannot be connected by 5m=6 parallel edges.

Proof By Lemma 12.5 and Lemma 12.3 (3), 5m=6� m
2
C 2, ie m� 6. So suppose

mD6 and there are 5m=6D5D m
2
C2 parallel consecutive edges e1; : : : ; e5 connecting

two vertices with the same orientation. Then by Lemma 12.3 (2) and Lemma 12.5,
we may assume that both fe1; e2g and fe4; e5g are S –cycles. But the bigon face R

between e1; e2 and the bigon face R0 between e4; e5 are on different sides of F . This
contradicts Lemma 12.4.

Suppose that � has m consecutively parallel edges e1; : : : ; em connecting two vertices
v and v0 with different orientations. The existence of the m parallel edges implies that
there is a length m� 1 reduced homotopy in .M;F /. Let Ri denote the bigon face
between the adjacent parallel edges ei and eiC1 , iD1; : : : ;m�1. Then R�

1
; : : : ;R�

m�1

are contained alternatively in X� and XC starting and ending on the X� side of F

by Lemma 11.15. Thus each of the bigon faces R1 , R3 , . . . , Rm�1 is mapped in
.†�

1
; ˆ�

1
/ and each of R2 , R4 , . . . , Rm�2 is mapped in .†C

1
; ˆC

1
/.

Orient all the edges e1; : : : ; em in the same direction such that their tails are in v
and their heads are in v0 . Up to renumbering, we may assume that the labels of the
tails of e1; : : : ; em are 1; : : : ;m respectively. The labels of the heads of e1; : : : ; em

are �.1/; : : : ; �.m/ for some permutation � of f1; : : : ;mg. (Note that the indices are
defined modulo m.)

Since F separates M , bi and biC1 have different orientations, for all i . Also bi and
bj have the same orientation if and only if i � j (mod 2). By the parity rule, for each
i 2 f1; : : : ;mg, the components bi and b�.i/ of @F , connected by e�i , have the same
orientation. (Note that if bi and b�.i/ are the same component of @F for some i , then
they are the same component for all i D 1; : : : ;m, ie � is the trivial permutation.) It
follows that bi is different from b�.iC1/ and that b�.i/ is different from biC1 , for all
i .

Let d be the number of orbits of the action of the permutation � on the set fb1; : : : ; bmg,
each of m=d elements. We may assume that indices are given as shown in Figure 2. By
the parity rule, the index k in Figure 2 must be an odd number. From Figure 2, we see
obviously that b1 and bk are in the same orbit, and bm and bk�1 are in another orbit.
By Corollary 11.18, ˆC

1
is a pair of tight components, T1 and T2 , which include all

boundary components of F .

Lemma 12.7 Suppose that e1; : : : ; em are m consecutively parallel edges of � con-
necting two vertices v and v0 with different orientations. We may assume that the

Geometry & Topology, Volume 12 (2008)



290 Steve Boyer, Marc Culler, Peter B Shalen and Xingru Zhang

v1

2
3

m

1

e1 e2 e3 em

R1R2

f

k
kC1

kC2

k�1
kv0

Figure 2: A pair of vertices of opposite orientations connected by m parallel edges.

permutation � given in the preceding paragraph is as shown in Figure 2. Then b1[ bk

and bk�1 [ bm are contained in different components of ˆC
1

; ie one in T1 and the
other in T2 .

Proof Recall that the annulus Bk�1 in @M has boundary bk�1[bk and the annulus
Bm has boundary bm[ b1 , both contained in XC . Thus bk�1 and bk are contained
in different components of ˆC

1
, and so are b1 and bm . In particular, the conclusion

of the lemma follows immediately if k D 1, ie if the permutation � is trivial. So we
may assume that � is non-trivial, b1 is contained T1 , and bm in T2 . We now only
need to show that bk is in T1 . Since k ¤ 1, the bigon face Rk�1 is mapped into
XC (since k is odd) and e�

k
connects bk to b�.k/ . If �.k/D 1, then we are done. If

�.k/¤ 1, then R�
�.k/�1

is in XC (since �.k/ is odd) and e�
�.k/

connects b�.k/ to
b�2.k/ (recall that the indices here are defined mod (m)). Repeat in this way for finitely
many times until �n.k/D 1 for some positive integer n (actually nD m

d
� 1 is the

number of elements in the orbit minus one).

Let x� denote the reduced graph of � , obtained from � by amalgamating parallel edges
into a single edge. Then x� is a graph with no 1–edge or 2–edge disk faces. If an edge
xe of x� represents n parallel edges of � , we say the edge xe has weight n.

Lemma 12.8 Let xe be an edge of x� with weight m. Then no face f of x� with @f
containing xe is a triangle face, ie a 3–edge disk face.
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Proof Suppose otherwise that there is a triangle face f in x� whose boundary contains
xe . Note that f is also a face in the graph � . Let v and v0 be the two vertices connected
by xe , and e1; : : : ; em be the family of parallel edges of � represented by xe .

First we consider the case that v and v0 have different orientations. We may assume
that the labels of the endpoints of the edges ei are given as in Figure 2. Now consider
the two “corners” of the face f at the vertices v and v0 , ie the intersection arcs of
the boundary of f with the boundary of the fat vertices. From Figure 2, we see that
the two corners have labels k; k � 1 and m; 1 respectively. If we follow @f in the
clockwise direction, the four labels appear in the order k; k � 1;m; 1.

Recall the setting in Lemma 12.1. The punctured solid torus U carried a generator of
the first homology of the punctured lens space yXC and the disk D1=2 was a meridian
disk of U . Note that U contains all the 2–handles Hi for i even and that the disk
D1=2 intersects each Hi , i even, in a single meridian disk of Hi .

If a disk face f 0 of � has n corners and is on the XC side, then it is not hard to see
that .@f 0/� is contained in U and intersects D1=2 transversely in n points (all the
intersections occur precisely one each within the corner arcs of @f 0 ). In our current
situation, the triangle face f is indeed on the XC side since Rm�1 is on the X� side.
Further, the algebraic intersection number of @f with D1=2 is 1 or �1 because of the
label orders on @f together with Lemma 12.7. Now we see that the existence of such
a triangle face f implies that the first homology of yXC is trivial, contradicting to the
fact that yXC is a punctured non-trivial lens space. This completes the proof for the
case when the vertices v and v0 have different orientation.

Now we consider the case when v and v0 have the same orientation. Then by Lemma
12.6, we have mD 4. By Lemma 12.3 (2), Lemma 12.4 and Lemma 12.5, we may
assume that four edges form two S –cycles and the labels on the tails and heads of the
four edges are as shown in Figure 3. From the figure, we see directly that b1[ b2 is
contained in one the tight components of ˆC

1
and b3 [ b4 is contained in the other.

And the labels 2; 3; 4; 1 appeared consecutively on @f (in clockwise direction). This
would imply, as in the previous case, that the first homology of yXC is trivial, giving
the same contradiction.

Now we can finish the proof of Proposition 5.4. Suppose otherwise that �.˛; ˇ/� 5.
An Euler characteristic calculation shows that either the reduced graph x� on the torus
T has a vertex of valence less than 6 or every vertex of x� has valence 6 and every
face of x� is a triangle face. By Lemma 11.15, every edge of x� has weight at most m.
So we may assume that x� has no vertex of valence less than 5.

Suppose that there is a vertex of valency 5 or less. Consideration of Lemma 11.15
yields �D 5 and the fact that every edge of x� incident a valence 5 vertex has weight
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1

2
1 4

3

2

v

v0

R1 R2 R3 f

Figure 3: A pair of vertices of the same orientation connected by m D 4

parallel edges which form two S –cycles.

exactly equal to m. So it follows from Lemma 12.8 that the graph x� in the torus T

has the following properties:

� no disk face has 1 or 2 edges,

� every vertex has valence at least 5,

� no triangle face is incident to a valence 5 vertex.

For a vertex v and face f of x� , we write v 2 @f to signify that v is incident to f .
Consider

�f D �.f /C
X
v2@f

� 1

valency.v/
�

1

2

�
:

By construction, if @f has three edges, then valency.v/� 6 for each v 2 @f . Hence
�f � 1C 3.�1

3
/ D 0 with equality if and only if f is a triangle face and each of

its vertices has valency 6. On the other hand, if @f has at least four edges, then
�f � 1C 4.1

5
�

1
2
/D �1

5
< 0. Thus since 0D �.T /D

P
f �f , each face of x� is a

triangle face and vertex has valency 6.

The proof of the following lemma is similar to that of Lemma 12.8.

Lemma 12.9 The graph x� cannot have an edge with weight larger than m� 2.

Proof Suppose otherwise that xe is an edge with weight at least m� 1. Since every
face of x� is a triangle face, Lemma 12.8 shows that the weight of xe is exactly m� 1.

Geometry & Topology, Volume 12 (2008)



Characteristic subsurfaces, character varieties and Dehn fillings 293

Let v and v0 be the two vertices connected by xe and let e1; : : : ; em�1 be the family of
parallel edges of � represented by xe , oriented such that their tails are at v and heads
at v0 .

If v and v0 have the same orientation, then we have mD 4 (Lemma 12.6). Since v
has valence 6 while there are 4�.˛; ˇ/� 20 endpoints of edges of � incident to v ,
some edge of x� incident to v will have weight mD 4, contrary to the conclusion of
Lemma 12.8.

Suppose, then, that v and v0 have different orientations. We may assume that the labels
of the endpoints of the edges ei are given as in Figure 4. By the parity rule, for each
of the edges e1; : : : ; em�1 , the two labels at its endpoints are congruent (mod 2). In
particular, the label k in Figure 4 is an odd number. Denote by R1; : : : ;Rm�2 the
m� 2 bigon faces defined by the m� 1 edges, where Rj contains the edges ej and
ejC1 . By our convention R1 lies on the X� side since R�

1
intersects the annulus B1

which lies on the X� side (cf Figure 4). So the triangle face f of x� which contains
the edge e1 (shown in Figure 4) lies on the XC side. It also follows that for each
i D 1; : : : ;m� 2, Ri lies on the X�–side if i is odd or on the XC side if i is even.

By Corollary 11.18, ˆC
1

is a pair of tight components T1 and T2 and contains all
components of @F . We want to show that b1[bk is contained in one component of ˆC

1

and bm[ bk�1 is contained in the other. This is obviously true if k D 1 since Bm is
contained in †C

1
. So suppose that k>1. As in the proof of Lemma 12.8, by considering

the orbit of the label 1 under the permutation of odd integers f1; 3; 5; : : : ;m�1g given
by the m�1 edges, we see that there is a sequence of odd labels k1 D k; k2; : : : ; kn 2

f3; 5; : : : ;m� 1g and edges ei1
; : : : ; ein

2 fe3; e5; : : : ; em�1g such that for 1� j < n,
the edge eij has tail label kj and head label kjC1 , and the edge ein

has tail label kn

and head label 1. Since Rij�1 lies on the XC side, we see that all e�ij , j D 1; : : : ; n,

are contained ˆC
1

. Since these n edges e�i1
, . . . , e�in

connect bk D bk1
, bk2

, . . . bkn

and b1 , we see that b1[ bk is contained in one component of ˆC
1

, say T1 . It follows
that bm[ bk�1 is contained in T2 , the other component of ˆC

1
, since the annuli Bm

and Bk�1 are contained in †C
1

.

From Figure 4, we see that the two corners of f at v and v0 have labels m; 1 and
k; k � 1 respectively in clockwise direction. Now combining with Lemma 12.1, we
see that the first homology of yXC is trivial, which is a contradiction.

We call an edge of x� positive (respectively negative) if it connects two vertices of the
same orientation (respectively different orientations). We call the endpoint of an edge
at a vertex positive or negative if the edge is positive or negative. We define the weight
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Figure 4: A pair of vertices of different orientations connected by m � 1

parallel edges.

of an endpoint of an edge to be the weight of the edge. The sum of the weights of the
endpoints at any vertex is �.˛; ˇ/m.

Lemma 12.10 Let v be a vertex of x� . Then among the six endpoints at v , at most
one is positive.

Proof If there are two positive endpoints at v , then their weight sum is at most mC4

by Lemma 12.5 and Lemma 12.3. So the rest four endpoints have total weight at least
4m� 4. So at least one endpoint has weight m� 1. This gives a contradiction with
Lemma 12.9.

Lemma 12.11 There is a vertex of x� with at least two positive endpoints.

Proof The previous lemma implies that the graph x� has no loops. Pick any vertex v0

of x� and let p1; : : : ;p6 be the six endpoints at v in clockwise order. We may assume
that p5; : : : ;p6 are all negative endpoints. Let xei be the edge of x� with endpoint pi

and observe that they are distinct edges since there are no loops. Let vi be the other
vertex that xei is incident to. Then the vi have the same orientation for i D 2; : : : ; 6.
Now v5 ¤ v4 since there are no loops, and there is an edge of x� connecting them.
Similarly there is an edge connecting v3 and v4 . Note that v3 ¤ v5 since otherwise
there is either a non-triangle face of x� or v4 has valence less than 6. Thus v4 has at
least two positive endpoints.

Geometry & Topology, Volume 12 (2008)



Characteristic subsurfaces, character varieties and Dehn fillings 295

Proof of Proposition 5.4. The contradiction between Lemma 12.10 and Lemma 12.11
completes the proof that �.˛; ˇ/� 4. If we have equality, then [3, Proposition 8.4] and
Theorem 1.1 imply that M.˛/ is Seifert fibred with base orbifold of the form S2.r; s; t/,
where .r; s; t/ is a hyperbolic triple and lcm.r; s; t/ divides 4. Thus Proposition 5.4
holds.
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