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Annals of Mathematics, 117 (1983), 109-146 

Varieties of group representations and 
splittings of 3-manifolds 

By MARc CULLER and PETER B. SHALEN 

Introduction 

This paper introduces a new technique in 3-dimensional topology. It is 
based on the interplay among hyperbolic geometry, the theory of incompressible 
surfaces, and the structure theory of subgroups of SL2(F), where F is a field. 
These same ingredients were used in the original proof of the Smith conjecture 
and also, for instance, in [26]; however, by taking F to be the function field of an 
appropriate complex algebraic curve, one can apply the structure theory of 
SL2(F) in a more direct way and thereby obtain answers to many purely 
topological questions that are inaccessible by other methods. 

For example, in [6] we apply the techniques of the present paper to show 
that if the rational homology of a compact, orientable 3-manifold is carried by its 
boundary, and some component of the boundary is non-simply-connected, then 
either the manifold contains a non-boundary-parallel, separating, bounded, in- 
compressible surface or it is homeomorphic to D2 X SI or D' X S' X S'. This 
generalizes the main theorem of [26]. In [7] we apply our techniques to obtain 
new partial results on the conjecture that knots have property P. In [21], a 
variation of the method of the present paper will be used to give new proofs of 
two fundamental results of Thurston's: that the space of hyperbolic structures on 
an acylindrical 3-manifold is compact, and that the Thurston boundary of 
Teichmiiller space consists of projective measured laminations. Purely group-the- 
oretical applications will be given in [5]. 

In Section 5 of the present paper, we apply our methods to obtain 
alternative proofs of the Smith conjecture and the Davis-Morgan theorem [9]. 
These proofs provide a good deal of new information on the structure of 
branched covering spaces. Thus Corollary 5.1.3 implies that if N is a closed cyclic 
branched cover of an orientable 3-manifold M, branched over a (non-empty) link 
L whose complement in M is irreducible but not Seifert-fibered, then either N 
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110 M. CULLER AND P. B. SHALEN 

contains an incompressible torus or ?T,(N) has a non-trivial representation in 
PSL2(C). (An appropriate version of this, Theorem 5.1.2, holds for non-cyclic 
regular coverings.) This is a strong form of the generalized Smith conjecture and 
in addition it provides strong evidence, in the case of regular branched covers, for 
Thurston's conjecture (see ? 4) that closed, non-sufficiently large 3-manifolds are 
hyperbolic or Seifert-fibered. 

In Section 5 we also find sufficient conditions (see Theorems 5.2.4 and 
5.2.7) for the representations given by 5.1.2 and 5.1.3 to have infinite image. This 
provides a new proof of Davis and Morgan's theorem [9] about group actions on 
homotopy 3-spheres (see our Corollary 5.2.6). It also allows one to prove many 
hard conjectures about general closed 3-manifolds, previously accessible only for 
Haken manifolds, for large classes of regular branched coverings. As examples we 
prove an analogue (Proposition 5.3.1) of Waldhausen's "center" theorem [36], 
and also an analogue (Proposition 5.3.2) of Evans and Jaco's theorem [11] about 
free subgroups of 3-manifold groups. 

Incidentally, we should like to call attention to Theorem 4.2.2 below, which 
we feel deserves to be better known. It asserts in effect that for "virtual Haken 
manifolds," i.e. closed, irreducible, oriented 3-manifolds that have finite-sheeted 
covering spaces containing incompressible surfaces, the above-mentioned conjec- 
ture of Thurston's is true up to homotopy equivalence. Although this follows 
easily from work done by Meeks-Simon-Yau, Mostow, Scott, Thurston, and 
Waldhausen, it does not seem to have been generally recognized that the pieces 
fit together in this way. We include the result here for some applications in 
Section 5, but it is obviously of more general importance. 

Before describing the basic technique of the paper, let us give some 
background. A recurrent theme in 3-manifold theory is the relationship between 
a manifold and its fundamental group. The idea originated with Stallings [28] 
that a free-product decomposition of a fundamental group of a 3-manifold gives 
rise to a system of 2-spheres in the manifold. This is exploited in [29], where the 
Sphere Theorem of Papakyriakopoulos and Whitehead is derived as a corollary of 
the deep algebraic result that a torsion-free group with infinitely many ends is a 
non-trivial-free product. More generally, it was pointed out by Epstein [10] and 
Waldhausen [36] that a decomposition of the fundamental group as a free 
product with amalgamation or HNN group gives rise (noncanonically) to a 
system of incompressible surfaces. (See the end of ? 2 below.) One algebraically 
deep method for producing amalgamated-free-product or HNN decompositions 
of a group is to exploit the theory of Tits, Bass, and Serre (see ? 2) on the 
structure of subgroups of SL2(F), where F is a field. If M is a hyperbolic 
3-manifold (see ? 3), ?T1(M) is isomorphic to a subgroup of SL2(C), and the 
Tits-Bass-Serre theory, together with the Stallings-Epstein-Waldhausen construc- 
tion, often permits one to find incompressible surfaces in M. These observations, 
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VARIETIES OF GROUP REPRESENTATIONS 1ll 

in combination with Thurston's work on the existence of hyperbolic metrics (see 
? 4), were used, for example, in the original proof of the Smith conjecture [3]; 
there the Tits-Bass-Serre theory was exploited via Bass's GL2-subgroup theorem 
[1], [2]. 

The technique of the present paper depends on considering the set of all 
representations of 7T1(N) in SL2(C), where N is a compact 3-manifold. This set 
can be regarded as a complex affine algebraic set R (? 1). For each complex 
algebraic curve C C R, there is a canonical representation of 'n1(N) in SL2(F), 
where F is the field of all rational functions on C. Each point of the smooth 
projective model C of C (cf. ? 1) determines a valuation of F, and by the 
Tits-Bass-Serre theory, each such valuation determines a (possibly trivial) "graph 
product" decomposition or "splitting" of ?T1(N) (see ? 2; this is a straightforward 
generalization of an amalgamated-free-product or HNN decomposition). These 
decompositions in turn can be used to produce incompressible surfaces in N by 
the Stallings-Epstein-Waldhausen construction. 

Actually it is technically better to work with the set of characters of 
representations of ?T1(N) in SL2(C), which can again be regarded as a complex 
affine algebraic set X (? 1). To each curve C in X, and each point of the smooth 
projective model of C, one can associate a splitting of ?T1(N) (see our "Funda- 
mental Theorem" 2.2.1). Besides being more invariant, this point of view has the 
advantage that the splittings associated with ideal points of C are automatically 
non-trivial, which means in particular that the associated incompressible surfaces 
are not boundary-parallel. 

To make these ideas useful one must have a way of producing curves of 
characters of representations of 7r,(N) in SL2(C). Thurston has shown that if N is 
a "simple Haken manifold" with torus boundary components, then N has a 
hyperbolic metric, that the hyperbolic metric gives rise to a representation of 
7T1(N) in SL2(C) and, moreover, that the character of this representation lies in 
an irreducible component X0 of X whose (complex) dimension is at least the 
number of boundary tori of N. (We give proofs of the last two statements in ? 3.) 
Thus if aN =# 0, X always contains curves. 

The applications depend on the use of certain complex-valued functions on 
the variety X0 described above. For each g E 7T1(N) define Ig(X) = x(g) where 
X is a character in X0. The functions Ig turn out to be regular on X0; if the 
restriction of some Ig to a curve C C X0 is non-constant, then its extension Ig to 
the smooth projective model C of C must have a pole at some ideal point x. If g is 
the homotopy class of a simple closed curve y in aN, the Fundamental Theorem 
guarantees that y cannot be a boundary component of one of the incompressible 
surfaces associated with x. 

To prove the theorem of [6] on the existence of separating, incompressible 
surfaces, in the special case of a simple knot space, one observes that a surface 
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112 M. CULLER AND P. B. SHALEN 

separates N if it does not have a longitude as a boundary component. Thus one 
needs only to find a curve C C X0 such that Ig I C, where g is the homotopy class 
of a longitude, is non-constant. 

To prove Theorem 5.1.2 on regular branched coverings in the case where 
the branch set is a knot K C M and M - K is hyperbolic, we find a curve C in 
the variety of characters of ? (M - K), on which the function Ig, where g is the 
homotopy class of a meridian of K, is non-constant. Thus given a complex 
number r, either (a) Ig takes the value T at a point of C or (b) Ig takes the value T 
at an ideal point of C. We apply this by taking r to be the trace of an element of 
order 2r in SL2(C), where r is the ramification index of the branched cover over 
K. If (a) holds, we construct a non-trivial representation of the fundamental 
group of the branched cover in PSL2(C). If (b) holds, the fundamental theorem 
turns out to give us an incompressible surface in the complement of a tubular 
neighborhood of K in M, whose boundary curves are meridians; one then applies 
the methods of Gordon and Litherland's paper [13] to construct an incompressi- 
ble surface in the branched cover. 

Here is the plan of our paper. In Section 1 we introduce the algebraic sets of 
representations and characters of representations of a finitely generated group 
into SL2(C). (The proof that the characters form a closed set is surprisingly 
difficult, and requires the Burnside Lemma from representation theory.) In 
Section 2 we review the Tits-Bass-Serre theory, state and prove our Fundamental 
Theorem, and show how graph-product decompositions give rise to incompressi- 
ble surfaces. In Section 3 we review some elementary facts about hyperbolic 
3-manifolds and prove some surprising theorems due to Thurston, including the 
above lower bound on the dimension of the variety X0. In Section 4 we state 
Thurston's uniformization theorem, which asserts the existence of hyperbolic 
metrics on simple Haken manifolds, and the Mostow rigidity theorem; then we 
use them to prove the result on virtual Haken manifolds which was described 
above. The application to the study of regular branched coverings occupies 
Section 5. 

We shall take for granted the contents of Hempel's treatise [14] on 3-mani- 
folds, and the elementary facts about complex algebraic varieties that are 
discussed in the first three chapters of [23]. Following [23], we define a closed 
algebraic set in CN to be the locus of zeroes of a set of polynomials, and an affine 
variety to be a closed algebraic set which is irreducible. Manifolds (and submani- 
folds) are understood to be Coo. (Thus we are really using the smooth analogues 
of the results in [14], but these follow easily from the PL versions.) By a surface 
we mean a connected 2-manifold.; An incompressible surface in a 3-manifold is 
understood to be bi-collared. A link in a closed 3-manifold is a non-empty, closed, 
1-dimensional submanifold. 

We would like to thank Hyman Bass, Cameron Gordon, William Jaco, 
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VARIETIES OF GROUP REPRESENTATIONS 113 

Charles Livingston, and John Morgan for helping us to understand what we were 
doing. 

1. Characters of representations in SL2(C) 

Some of the results of this section appear to be new, others are classical 
results for which no convenient reference exists. Some recent papers on the same 
general subject as this section are [17] and [4]. 

We will be considering representations of a finitely generated group in 
SL2(C). We begin by showing how to parametrize these representations and 
their characters as points of affine algebraic sets: this is preparation for the 
Fundamental Theorem, proved in Section 2, which derives information about the 
structure of the group from its space of characters. The most difficult result here 
is Proposition 1.4.4, which implies that the space of characters is a closed 
algebraic set. 

1.1 The space of representations. Throughout this section HI denotes a 
finitely generated group. We are concerned with representations of II in SL2(C) 
(i.e. homomorphisms p: II SL2(C)). Recall that two such representations, p 
and p', are equivalent if p' = Jp, where J is an inner automorphism of GL2(C). 
The character of a representation p is the function Xp: H -* C defined by 
Xp(g) = tr(p(g)); equivalent representations obviously have the same character. 

In terms of a set of generators go1, ... g,, for II, we define a set R(ll) C 
SL2(C)' C C4" to be the set of all points (p(gl),... , p(g)) where p is a 
representation of II. It is easy to show that R(HI) is an affine algebraic set in 
C4". (The defining equations of R(ll) arise from the defining relations of IH; thus 
a priori there may be infinitely many equations, but the Hilbert basis theorem 
allows us to replace them by a finite set.) There is a natural 1-1 correspondence 
between the points of R(ll) and the representations of II in SL2(C), and we shall 
identify points with the corresponding representations and refer to R(ll) as the 
space of representations of II in SL2(C). Given two finite sets of generators for 
II, the unique bijection between the corresponding "spaces of representations" 
which preserves the above identification is an isomorphism of algebraic sets. 
Thus R(ll) is well-defined up to canonical isomorphism. 

1.1.1. PROPOSITION. Let V be an irreducible component of R(ll). Then any 
representation equivalent to a representation in V must itself belong to V. 

Proof The set V X SL2(C) C SL2(C) n+1 is a product of two affine varieties 
(i.e. irreducible affine algebraic sets) and is therefore an affine variety. The map 
f: V X SL2(C) -R(Hl) given by f(x1,. . .x 

n ,a) = (ax1a-1,... ax a-') is a 
regular map since it is defined by polynomials in the coordinates. The set 
f(V X SL2(C)) C R(H), as the closure of the image of a variety under a regular 
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114 M. CULLER AND P. B. SHALEN 

map, is automatically a variety. Hence f(V X SL2(C)) is contained in a compo- 
nent V' of R(ll). But then V= f(VX {1}) C V', and since V is itself a full 
component of R(H) we must have V = V'. Thus f(V X SL2(C)) C V, and this is 
equivalent to the statement of the proposition. LI 

1.2. Irreducibility. Recall that a representation p of HI in GLn(F), where F 
is a field, is irreducible if the only subspaces of Fn which are invariant under 
p(ll) are {0} and F', and that p is absolutely irreducible if it is irreducible when 
regarded as a representation of HI in K', where K denotes the algebraic closure 
at F. 

1.2.1. LEMMA. Let F be a field of characteristic zero and let p be a 
representation of H in SL2(F) with non-abelian image. The following are 
equivalent. 

(i) p is reducible. 
(ii) p is reducible over the algebraic closure of F. 
(iii) xp(c) = 2 for each element c of the commutator subgroup of H. 

Proof Obviously (i) implies (ii). 
Suppose that p is reducible over the algebraic closure K of F. Then p is 

equivalent over K to a representation by upper triangular matrices. The commu- 
tator of two upper triangular matrices is upper triangular with diagonal elements 
equal to 1. It follows that XP(c) = 2 for c E [HI, HI]; thus (ii) implies (iii). 

To complete the proof we will show that if Xp(c) = 2 for all c E [II, II] 
then p([Il, HI]) has a unique 1-dimensional invariant subspace L; since p([ll, II]) 
is normal in p(ll), L will automatically be invariant under p, and p will therefore 
be reducible. Since p(ll) is non-abelian there exists c E [HI, HI] such that 
p(c) ? 1. Since Xp(c) = 2, p(c) has a unique 1-dimensional invariant subspace 
L. Now suppose that for some c' E [HI, HI], L is not invariant under p(c'). Then 
p(c') ? 1, and p(c') has a 1-dimensional invariant subspace L' ? L; hence after 
replacing p by an equivalent representation and recalling that trp(c) = trp(c') 

= 2, we may assume that p(c) = ( a 
5 p(c') ( = )where af: iO 

since p(c) and p(c') are # 1. But then trp(cc') = 2 + a13 ? 2, a contradiction. 

1.2.2. COROLLARY. If K is an algebraically closed field of characteristic zero 
then a representation p of HI in SL2(K) is reducible if and only if XP(c) = 2 for 
each element c of the commutator subgroup of HI. 

Proof. Since K is algebraically closed, if p(ll) is abelian then p(ll) has a 
1-dimensional invariant subspace. If p(ll) is non-abelian then Lemma 1.2.1 
applies. LI 

This content downloaded from 128.248.155.225 on Sun, 4 Jan 2015 21:55:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VARIETIES OF GROUP REPRESENTATIONS 115 

1.3. Curves of representations. Let C be an affine algebraic curve. Then 
there exists a non-singular projective curve C whose function field is isomorphic 
to that of C. (See Mumford [23].) Geometrically, C can be constructed by 
completing C to a projective curve and resolving the singularities. It follows from 
[23, Proposition 7.1 (ii)] that C is unique up to birational equivalence. Moreover, 
if C and D are affine curves then, since any rational map from a smooth curve to 
a projective variety is regular ([23, Proposition 7.1 (i)]), any rational map 
f: C -, D determines a regular map f: C -> D. Similarly, if V denotes the closure 
in pN of a (concrete) affine variety V C CN, a rational map f: C -* V determines 

A _ 

a regular map f: C -* V. 
If C is any projective completion of C, then we define the ideal points of C 

to be the points that correspond to the elements of C - C under the birational 
correspondence between C and C. If f: D -* C is any regular map between 
affine curves then the inverse image under f: D -* C of each ideal point of C will 
consist of ideal points of D. Thus, in particular, the definition of the set of ideal 
points of C does not depend on the choice of projective completion C. Also, if 
f: C -* C is a regular function then f: C -* PV will be a regular function whose 
poles are contained in the set of ideal points of C. 

Suppose now that C is an affine curve contained in R(Hl). There is a 
canonical construction of a representation P of II into SL2(F), where F is the 
field of functions on the curve C. (Of course F is isomorphic to the field of 
functions on C, but it is much more convenient to work with functions on a 
smooth projective curve.) The representation P is defined as follows. Let g C rI 
be given. A point p C C is a representation of HI in SL2(C). Set 

P(g) (a(p) b(p) , forpeC. 

Thus a, b, c, d are well-defined complex-valued functions on C. They are clearly 
given by polynomials in the ambient coordinates of C4n D R(Hl), and are 
therefore regular functions. We now set 

Pfg) = ( 7 '1 c SL2(F). 

1.3.1. LEMMA. If the curve C contains an irreducible representation, then P 
is absolutely irreducible. 

Proof Let K be the algebraic closure of F. If P is reducible over K then 
tr(P(c)) = 2 for each c c [II, HI]. Now, by the definition of P, the function 
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116 M. CULLER AND P. B. SHALEN 

tr(P(c)) c F is fc where fc(p) = tr(p(c)). But the element 2 of f is the constant 
function whose value is 2. Thus tr(p(c)) = 2 for each c E [HI, II] and each 
p E C. By Corollary 1.2.2, this implies that each representation p in C is 
reducible. C] 

1.4. The space of characters. We wish to show next that the characters of 
the representations of II in SL2(C) can be identified with the points of an 
algebraic set. For each g E II we may define a regular function Tg on R(H) (i.e. a 
map Tg: R(H) -* C) by Tg(p) trp(g) = xP(g). Let T denote the ring gener- 
ated by all the functions Tg, g E H. 

1.4.1. PROPOSITION. The ring T is finitely generated. 

Proof Let To denote the ring generated by all functions Tg.. *g., where 
i1, . r are distinct positive integers ? n. We shall prove the lemma by showing 
that Tg E To for every g E H. 

The proof will be based on the identity 

tr(x)tr(y) = tr(xy) + tr(xy-'), 

which holds for all x, y E SL2(C). (It follows from the identity y + y' (tr y)I, 
which in turn follows from the Cayley-Hamilton theorem.) The identity implies 
that 

(*) TgTh Tgh + Tg h- 

for all g, h c H. 
We first show that Tg e To whenever g = gli ... gfMr, where il.. ir are 

distinct integers between 1 and n and m1,... 5mr e Z. We use induction on the 

integer v= Kp, where K, is defined to be -m, if m 0 . m, -1 if mi > 0. If 

v = 0 then all the mi are 0 or 1, and so g c To by definition. If v > 0 then after 
replacing g by a conjugate element for which v has the same value, we may 
assume that mr 0O 1. If mr < O then by (*) we have Tg = Tgg Tgi - Tgg2, where 

sgg~ g sgg To by the induction hypothesis and g-1 =g, c To by definition; 
hence Tg To. A similar reduction works if Mr > 1r 

Now let g c H be arbitrary. We may write g in the form gtmli *.. gtfr, where 
i1 ... , ir are integers that are not necessarily distinct. We shall prove by induction 
on r that Tge To. 

By the case already proved we may assume that il,... 'ir are not all distinct. 
Hence, after replacing g by a conjugate element for which v has the same value, 
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VARIETIES OF GROUP REPRESENTATIONS 117 

we may assume that ir = is for some s < r. Set 

V Ml .. gms, W = g-ns+l ... gir. 

Then by (*) we have g = VW = TVTW -TVW-. But TV, TW5 TVW-E To by the 
induction hypothesis, and so frg e To. D 

We now fix a finite set Y1,... , Ym of elements of G such that TYI'T'TY 
generate T. (Such a set is furnished, for example, by the proof of Proposition 
1.4.1.) Define a map t: R(I) -* Cm by t(p) = (Ti-(p)),... fry(p)). Set X(H) 
t(R(HI)). 

Since TYI'.. TY generate T, the character of a representation p E R(H) is 
determined by t(p). Hence there is a natural 1-1 correspondence between the 
points of X(H) and the characters of representations of H in SL2(C). 

1.4.2. LEMMA. The set of reducible representations of H1 has the form 
t-'(V) for some closed algebraic set V in Cm. 

Proof. By Corollary 1.2.2 the reducible representations are those points of 
R(ll) at which T, takes the value 2 for each c E [II, HI]. Since T is generated by 
TYi*'.. . fy, the function rc, for every c E [H., H], has the form fo t where f is an 
integer polynomial function in m variables. El 

We shall prove that X(ll) C Cm is actually a closed algebraic set. This will 
follow from Proposition 1.4.4, the proof of which requires the following lemma. 

1.4.3. LEMMA. Let A be a principal ideal domain and let F denote the field 
of fractions of A. Let P be an absolutely irreducible representation of a group II 
in GLn(F), n > 0. If Xp(11) C A then P is equivalent to a representation whose 
image is contained in GLn(A). 

Proof Set F = P(H). According to the Burnside Lemma (see for example 
[1, 1.2]), the absolute irreducibility of P implies that F spans the K-vector space 
Mn(K) of n X n matrices over the algebraic closure K of F, and that there is a 
basis t1,... ,tn2 of Mn(K) such that each element of F has the form laiti, where 
the ai are traces of elements of F. By hypothesis, the ai belong to A. Thus the A- 
module AF C Mn(F) C Mn(K) spanned by F is contained in a finitely gener- 
ated A-module in Mn(K); since A is, in particular, Noetherian, AF is itself 
finitely generated. On the other hand, AF must span Mn(F) since F spans 
Mn(K). 

Now pick any x 4- 0 in Fn. The F-invariant A-module AFx ={ix: [ E AF} 
C F' is finitely generated and spans Fn. Since A is a p.i.d., ATx is free and is 
therefore spanned by a basis of Fn. But the existence of a basis for Fn that spans 
a F-invariant A-module is clearly equivalent to the statement of the lemma. [I 
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118 M. CULLER AND P. B. SHALEN 

1.4.4. PROPOSITION. If R0 is an irreducible component of R(H) which 
contains an irreducible representation, then t(RO) C Cm is an affine variety 
(and in particular a closed set). 

Proof Since t(Ro) C Cm is the image of an affine variety under a regular 
map, there exist an affine variety X0 and a proper closed algebraic subset W0 of 
X0 such that X0 - W0 C t(RO) C X0. We must show that t(RO) = X0. This is 
trivial if X0 is a single point, and so we may assume dim X0 > 0. Let x E X0 be 
given; we will prove that x E t(RO). 

By Lemma 1.4.2 there is a closed algebraic set V C Cm such that t-1'(V) is 
the set of all reducible representations in R(H). Since by hypothesis Ro contains 
an irreducible representation, we have t(RO) ? V. Thus V0 = V n X0 is a proper 
closed algebraic subset of X0. Since X0 is irreducible, V0 U W0 is again a proper 
closed algebraic subset of X0. Hence (since dim X0 > 0) there exists an affine 
algebraic curve C C X0 such that x E C and C ? V0 U W0. (We may take C to 
be an irreducible component of the intersection of X0 with a generic subspace of 
dimension m - dim(X0) + 1 passing through x E Cm.) 

The set C n Wo is finite, and by the definition of W0, C \ W0 C t(R(H)). 
Hence there is a positive dimensional component H of t-'(C) C R(H) such that 
t IH is not constant. We may construct (again by considering intersections with 
affine subspaces) a curve D C H such that t ID is not constant. 

In the notation of 1.3, the inclusion map i: D -* R0 defines a map d =i: D 
A 

RC c pn, and the rational map tID: D -* C defines t: D C. Since t is 
A 

non-constant, t maps D onto C. Moreover, for any non-ideal point z of D, 
t(d(z)) t(z). 

Let C E D be a point such that t(y) = x. If y! is not an ideal point of D then 
we are done. For then d(y) c D and t(d(g)) = t(y) = x. Otherwise we will 
construct a new regular map d' D 1- Ro such that d'(y) c Ro and t(d'(g)) -x. 

This is where we use Lemma 1.4.3. Let F be the field of functions on D, let 
P be the canonical representation of HI in SL2(F), and let A C F be the ring of 
functions which do not have poles at y. Since D is smooth, A is a discrete 
valuation ring and hence a principal ideal domain. To apply Lemma 1.4.3 to P 
we must check that Xp(H) C A, i.e. that tr P(g) c A for all g e HI. But we have 
seen that the element tr P(g) of F. regarded as a function on D, is the function 
p -* tr p(g). Let us denote by pz the representation d(z) c D where z is not an 
ideal point of D. To say that tr P(g) c A means that lim z tr pj(g) is finite. But 
for g = yi, 1 < i ? m, this follows from the fact that limzyt(z) t(y) = x. For 
arbitrary g c H, the assertion follows from the fact that the functions Tw... TY. 
generate the ring T. 
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By Lemma 1.4.3, then, P is equivalent to a representation P1: H - SL2(A). 

Thus there is a matrix M ( A) E SL2( F) such that P1(g) MP(g)M- 

for all g E H. There is a Zariski open set U in D (i.e. the complement of a finite 
set) such that U contains no ideal points of D and no poles of a, /3, y or &. We 
define d' to be the extension to D of the map defined on U by z -* MpzM-'. 
(The extension exists by [23, Proposition 7.1 (ii)].) Clearly d'(y) is the representa- 
tion in R(H) defined by 

g c(( ) d(y)b ) whereP1(g) (a d) SL2(F). 

Since d'(z) is equivalent to d(z) for each z in U, the image of d' is contained 
in Ro and t(d'(z)) = t(z) for all z E U. By continuity t(d'(q)) = x, so that 
x E t(RO) as required. LI 

1.4.5. COROLLARY. X(H) is a closed algebraic set. 

Proof Since X(H) is the image of a closed algebraic set under a regular 
map, its closure in Cm is a closed algebraic set; hence we need only show that 
X(H) is closed. Write X(H) = t(R(H)) = t(A) U t(B), where A is the union of 
all those components of R(H) which contain irreducible representations, and B is 
the set of all reducible representations in R(H). By 1.4.4, t(A) is closed; we shall 
prove the corollary by showing that t(B) is closed as well. 

Every representation p in B is equivalent to a representation p' by upper 
triangular matrices. Moreover, p' clearly has the same character as the represen- 
tation p" defined by 

p"(g) = (0 as') where p (g) = ( b at) 

Thus t(B) = t(D), where D is the set of all diagonal representations in R(H). 
But the map t I D: D -> cm is at once seen to be a proper map, and hence t(D) 
is indeed closed. ? 

We have mentioned that there is a natural 1-1 correspondence between the 
characters of representations of H in SL2(C) and the points of (the closed 
algebraic set) X(H). From now on we shall identify the points of X(H) with the 
corresponding characters; X(H) is the space of characters of the group H, and 
we have t(p) =X for p e R( H). If we consider two different families of 
elements of H of the form (yi)lcicM where the Ti> generate the ring T, the 
unique bijection between the corresponding "varieties of characters" is an 
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isomorphism of algebraic sets; thus X(H) is well-defined up to canonical isomor- 
phism. 

We have seen that, since Tiy1*. .Tym generate T, there exists for each g E H a 
function whose value at each character X E X(H) is x(g). This function will be 
denoted by Ig. It is the restriction of a polynomial function on Cm, and hence a 
regular function on X(H). 

1.5. Some elementary facts. 

1.5.1. LEMMA. If p is an irreducible representation of H in SL2(C) and 
p(g) 4? + 1 for a given g E H, then there exists h E H such that the restriction of 
p to the subgroup generated by g and h is irreducible, and such that xp(h) 4 + 2. 

Proof First we show that there is an element ho of H such -that p(g) and 
p(ho) have no common eigenvector. If p has a unique 1-dimensional invariant 
subspace L this is obvious, since by the irreducibility of p there exists ho E H 
such that L is not invariant under p(ho). If p has two 1-dimensional invariant 
subspaces L1 and L2, we can find hi, h2 such that Li is not invariant under p(hi). 
We may take ho = hi or h2 unless L1 and L2 are invariant under p(h2) and p(hl) 
respectively. But in this case we may take ho = hih2. 

If XP(ho) 34? 2, we may take h = ho and the conclusion of the lemma 
follows. Now assume that Xp(ho) = -2. Observe that p(ho) 4? _ 1 since p(g) 
and p(ho) have no common eigenvector. Thus we may assume that p(ho)= 
? ( ). Then p(g) cannot be upper triangular, and so p(g) (a d) with 
c 4 0. For any n cZ we have XP(gh2n) = xp(g) + 2nc; hence for some n, 
Xp(gh2n) # ?2. Set h = gh n. Then p(g) and p(h) cannot have a common 
eigenvector, because the only 1-dimensional invariant subspace of p(hgn) is also 
invariant under ho. [ 

1.5.2. PROPOSITION. If p and p' are representations of H in SL2(C) with 
X P = X P, and if p is irreducible, then p and p' are equivalent. 

Proof By 1.5.1 we can find g, h E HI such that the restriction of p to the 
subgroup G generated by g and h is irreducible and xp(h) 4? 2. Since XplG = 

XOp'G' it follows from 1.2.1 that p'I G is irreducible. After changing p and p' 
within their equivalence classes we may assume that 

p(h) =p'(h)=( a-1) at:3-1 

Since p I G and p' I G are irreducible, neither p(g) nor p'(g) can be upper or 
lower triangular. Hence, after composing p and p' with conjugations by diagonal 
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matrices, we may further assume that 

p(g) = ( P (g) f(c 1) 

for some a, a', c, c', d, d' c C, with c, c' # 0. 
Now for any y E H, set 

P(Y) (r s) P () rf sf 

We have p + s = Xp(y) = Xp'(y) pf + so, and 

ap + a-'s = xp(hy) = Xp (hy) = ap' + aos'; 

since a I ?1 it follows that p = p', s = s'. Replacing y by g, we get a a', 
d = d'. Since p(g) and p'(g) have determinant 1 it follows that c = c'. On the 
other hand, replacing y by gy, we get ap + r = a'p' + r', so that r = r', and 
cq + ds = c'q' + d's' = cq' + ds. Since c # 0 it follows that q = q'; thus 
p(y) = p'(y), and we have shown that p = p'. D 

Hyman Bass informs us that 1.5.2 remains true if SL2(C) is replaced by 
GL(C). 

1.5.3. COROLLARY. If Ro is an irreducible component of R(H) which 
contains an irreducible representation, and if X0 = t(RO) (which by 1.4.4 is an 
affine variety), then 

dim X0 = dim R0 - 3. 

Proof It is enough to prove that for every point X in a Zariski-open set 
U C X0, we have dim t-'(X) = 3. Set U = X0 n (C m- V), where V is the 
closed algebraic set given by Lemma 1.4.2; then for each X E U, t-'(X) consists 
of irreducible representations. By 1.5.2, t-'(x) is a single equivalence class of 
irreducible representations. Fix p E t-'(X). The map p: SL2(C) - t-'(x) de- 
fined by p(M) = Jm ? p, where JM denotes conjugation by M, is a two-sheeted 
covering map. (This is because an irreducible representation has non-abelian 
image, and the centralizer of a non-abelian subgroup of SL2(C) is { )1).) Hence 
dim(t-'(X)) = dim SL2(C) = 3. C] 

1.5.4. PROPOSITION. Let p E R(H) be an irreducible representation such 
that p(g) 4? + 1 for a given g E H. Then there is a Zariski neighborhood U of 
t(p) = in X(H) such that p'(g) 7# ?t1 for any representation p' E t-l(U). 

Proof: By 1.5.1, there exists h E H such that the restriction of p to the 
subgroup G of H generated by g and h is irreducible. By 1.2.1, there is an 
element c of the commutator subgroup of G such that xp(c) 7# 2. Define U to be 
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the Zariski-open set X(H) - I-'(2). Then t(p) E U; and for any p' E t-'(U), we 
have Xp (c) 47 2, so that p' I G is irreducible. In particular, p'(G) is not cyclic, 
and therefore p'(g) 47 1. D 

We conclude with a stronger version of 1.2.1 in a special case. 

1.5.5. PROPOSITION. Suppose that HI is generated by g and h. Then any 
representation p of H in SL2(C), such that x,([g, h]) = 2, is reducible. 

Proof We may assume that p([g, h]) 74 1, for otherwise p(HI) is abelian and 
the conclusion is immediate. Additionally, we may assume without loss of 
generality that H is free on the generators g and h. Let G denote the subgroup 
generated by g1 = g and g2= hg-lh-1. Then the proof of 1.4.1, with H 
replaced by G, shows that the ring of functions on R(G) generated by Tg1, T9g2 and 
Tglg2 contains for every y E G; hence the character of a representation of G in 
SL2(C) is determined by its values at g1, g2 and g1g2. Since XPIG takes the value 
a = xP(g) at g1 and g2 and the value 2 at g1g2, it coincides with the character of 
the representation a: G -* SL2(C) defined by a(g1) P(g1), a(g2) = P(01) 
Since a has cyclic image, it is reducible. Thus by 1.2.2, p I G is reducible. It 
follows that p(g) and p([g, h]) have a common eigenvector. 

By the same argument, p(h) and p([g, h]) have a common eigenvector. But 
since p([g, h]) has trace 2 and is not the identity, it has a unique 1-dimensional 
invariant subspace. Hence p(g) and p(h) have a common eigenvector, and the 
conclusion follows. D 

2. Curves of characters and splittings of groups 

The main result of this section is Theorem 2.2.1, which associates a 
decomposition of a group H to each ideal point of the desingularization C of a 
curve C in X(H). This is an application of the theorems of Tits, Bass, and Serre 
[25] on the structure of subgroups of SL2(F) where F is a field with a discrete 
valuation. (In our case F is the field of functions on C, and the valuation is that 
associated with an ideal point of C.) The relevant aspects of the Tits-Bass-Serre 
theory can be summarized in two theorems, which are stated in 2.1. If H is the 
fundamental group of a 3-manifold M then, via the decomposition of H, we can 
associate to each ideal point of C a family of incompressible surfaces in M. This is 
discussed in 2.3. 

2.1. Tits-Bass-Serre theory. We begin by reviewing the combinatorial aspect 
of the Bass-Serre theory of groups acting on trees; we shall take the point of view 
of Tretkoff's paper [35], which is the natural one for our applications. 
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By a graph we shall mean a 1-dimensional CW-complex. A connected, 
simply-connected graph will be called a tree. A homomorphism of graphs is a 
map which sends vertices to vertices and maps edges to edges linearly. 

Associated with a graph G is a category whose objects are the edges and 
vertices of G, with a morphism from each edge to each of its endpoints. A graph 
of groups, with underlying graph G, is a functor 9 from this category to the 
category of groups and monomorphisms. A graph of groups will be referred to as 
a pair (G, 9). 

An Eilenberg-Maclane space can be constructed from a graph of groups 
(G, 9). For each vertex v of G let Xv, be a space of type K(9(v), 1), and for each 
edge e let Xe be a space of type K(9(e), 1). Consider the disjoint union of all the 
spaces Xe X [0, 1] and Xv. Let K(G, 9) be the quotient of this union defined as 
follows. If e is an edge with vertices vo and v1, and if f0: Xe X vo and 

fA: Xe -> X V are maps inducing the monomorphisms: 6(e) -* 9(vo) and: 3(e) 
-(v1), then we identify (x, i) to f(x) for each x E Xe and for i = 0, 1. 

We define the fundamental group of the graph of groups (G, 9) to be the 
group 71(G, 9) _ 7r1(K(G, s)). We remark that the isomorphism type of 71(G, 9) 
is independent of all choices made in its definition, and that the natural 
homomorphisms: 6(v) -* '7T(G, 9) and: 6(e) -* T1(G, 9) are in fact monomor- 
phisms whose images are well-defined up to conjugacy in g7l(G, 9). A subgroup 
which is conjugate to the image of 6( v) for a vertex v of G is called a vertex 
group. An edge group is a subgroup of gl(G, 9) which is conjugate to the image 
of 6(e) where e is an edge of G. 

An isomorphism between an abstract group H and the fundamental group 
of a graph of groups will be called a splitting of H. A splitting of H gives rise to a 
well-defined set of vertex groups and edge groups in H. The splitting will be 
non-trivial if all the vertex groups are proper subgroups. 

We will say that a group H acts on the graph G without inversions provided 
that H acts by isomorphisms of G which do not reverse the orientation of any 
invariant edge. If HI acts without inversions on G then the quotient G/HI is a 
graph, and the projection: G -> G/H is a homomorphism. 

Suppose that the group HI acts without inversions on the tree T. Then T will 
contain a sub-tree T' which contains exactly one edge from each orbit of the 
action of H on the edges of T. If c is an edge or vertex of T/H, let c denote the 
edge or a vertex of T' which projects to c under the quotient map T -* T/H. Let 
(T/H, 9) be the graph of groups defined by setting 6(C) equal to the stabilizer 
of c for each edge or vertex c of T/H, with monomorphisms defined as follows. If 
e is an edge of T/H, with vertices vo and v1, then there exist elements yo and y1 
of HI such that yo3o and ylv1i are the endpoints of e. We embed the stabilizer of i 
into the stabilizer of v-i, i = 0 or 1, by sending x to y7 1xyi. (If different choices of 
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yo and -y are made, the resulting graphs of groups have isomorphic fundamental 
groups.) 

The following result is the basic combinatorial fact in the Tits-Bass-Serre 
theory. It is included in Theorem 7 of [35]. 

2.1.1. THEOREM. If the group H acts without inversions on the tree T, then 
171 is isomorphic to 1(T/IH, 9), where the graph of groups (T/H, 9) is defined 
as above. 

Suppose now that H is a subgroup of SL2(F) where F is a field with a 
discrete valuation v. The valuation ring of F defined by v is the subring 
6 = {a E F Iv(a) ? 0). Let v be an element with v(v) - 1. Then (,g) is the 
unique maximal ideal in C, and the field k = 6/(7) is called the residue field of 
v. Let V be a two-dimensional vector space over F. An C-lattice in V is an 
6-submodule of V which spans V as a k-vector space. Any C-lattice L has a basis 
{el, e2) over C, and if L' C L is another C-lattice then L/L' is isomorphic to 
1/(,a) (6/(Tb) for non-negative integers a and b. If a is a non-zero element of 

F, then aL is also an C-lattice. Define two C-lattices L and L' to be equivalent if 
L = a L' for some a E F*. We may now define a graph by taking as vertices the 
equivalence classes of 6-lattices in V. Two 6-lattices A and A' are joined by an 
edge whenever there exist C-lattices L and L' in A and A' such that L' C L and 
L/L' - k. It is shown in [25] that this graph is a tree. This is a special case of a 
theorem due to Tits. 

Now let p be a representation of a group H in SL2(F). Then p determines in 
an obvious way anr action of H on the tree defined above. Moreover, the 
stabilizers of the vertices under this action are precisely those subgroups of H 
whose images under p are contained in conjugates of SL2(6) in GL2(F). Hence 
2.1.1 yields the following result. 

2.1.2. THEOREM. If p is a representation of a group H in SL2(F), where F is 
a discretely valued field, then H has a splitting in which the vertex groups are 
precisely those subgroups of H whose images under p are contained in conjugates 
of SL2((D) in GL2(F). F 

2.2. The Fundamental Theorem. The following theorem will be our funda- 
mental tool for obtaining topological information from the space of characters of 
the fundamental group of a 3-manifold. 

2.2.1. THEOREM. Let C be an affine curve contained in X(H). To each ideal 
point I of C one can associate a splitting of H with the property that an element 
g of H is contained in a vertex group if and only if Ig does not have a pole at i. 
Thus, in particular, the splitting is non-trivial. 
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Proof As in the proof of 1.4.4, there exists a curve D C t-'(C) C R(H) 
such that the restriction of t to D is not constant. We thus have the following 
commutative diagram of rational maps: 

D -* D C R(ll) 

I tID I tID I t 

C -> C C X(ll). 

The map tID is a regular map for which the inverse image of an ideal point of C 
consists of ideal points of D. Let q be an ideal point of D in the inverse image 
of x. 

We now consider the canonical representation P of II into SL2(F) where F 
is the field of functions on D. The point - of D determines a discrete valuation on 
F for which the valuation ring e consists of all functions on D which do not have 
poles at !. Thus we may apply Theorem 2.1.2 to conclude that the group HI has a 
splitting with the property that an element g of II is contained in a vertex group 
if and only if P(g) is conjugate in GL2(F) to an element of SL2(6). 

To complete the proof we must show that P( g) is conjugate to an element of 
SL2(6) if and only if Ig does not have a pole at x. If P(g) is conjugate to 
(a )where a, f3, 8, y E C, then g = a + 8 does not have a pole at q and 

hence 'g does not have a pole at x. Conversely, suppose Ig does not have a pole at 
x. Then fg does not have a pole at q, and hence is an element of ?. Let v be a 
vector in F2 which is not an eigenvector for P(g). In terms of the basis 

{v, P(g)v}, P(g) is described by the matrix (1 - ) SL2(6). Thus P(g) is 

conjugate in GL2(F) to an element of SL2(0). 
Since ? is an ideal point, Ig must have a pole at x for some g e HI. Hence the 

splitting is non-trivial. E 

2.3. Incompressible surfaces. The Fundamental Theorem 2.2.1 will be ap- 
plied in the subsequent sections to the case that II is the fundamental group of a 
compact, orientable 3-manifold. In this case the following result, whose proof is 
essentially due to Stallings, Epstein, and Waldhausen, will permit one to con- 
struct incompressible surfaces in the 3-manifold from the splittings given by 
2.2.1. 

2.3.1. PROPOSITION. Let N be a compact, orientable 3-manifold. For any 
non-trivial splitting of 7r1(N) there exists a nonempty system I = El U ... U 1,m 
of incompressible surfaces in N, none of which is boundary-parallel, such that 
im(?71(2i) -- ?71(N)) is contained in an edge group for i = 1,... ,m, and 
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im('r1(R) --* 7r1(N)) is contained in a vertex group for each component R of 
N - E. Moreover, if SC C aN is a subcomplex such that im(7r1(K) --* 7r(N)) is 
contained in a vertex group for each component K of SC, we may take l to be 
disjoint from SC. 

Proof We are given an isomorphism of 'r1(N) with 7T1(G, 9) = 7r1(K(G, s)), 
where (G, 9) is a graph of groups. Since K(G, 9) is an aspherical space, there is 
a map f: N -* K(G, 9) inducing the isomorphism. After a homotopy we may 
assume that f is transverse to the bi-collared subcomplex Xe X { 2 } of K(G, 6) 
for each edge e of G, and that for each component K of %3C, f(K) is contained in 
Xv for some vertex v of G. After a further homotopy (cf. [14, Lemma 6.5]) we 
may assume that each component of if 1( U Xe X { 2 }) is incompressible, where 
the union is taken over all edges e of G. Define 2 to be the union of all 
components of f'( U X > { 1 }) which are not boundary-parallel. Then 2 is 
easily seen to have all the properties asserted in the statement of the proposition. 
(If 2 were empty, f would be homotopic to a map with image disjoint from all 
the Xe; this would imply that 7r1(N) is a vertex group, contradicting the 
nontriviality of the splitting.) E 

3. Hyperbolic 3-manifolds 

The Fundamental Theorem 2.2.1 and Proposition 2.3.1, taken together, 
show how the ideal points of a curve in X(7r1(M)), where M is a 3-manifold, can 
give rise to systems of incompressible surfaces in M. In this section we show how 
a hyperbolic structure on M can give rise to curves of characters to which the 
results of Section 2 can be applied. The substance of this section is largely due to 
Thurston [30]. However, since the point of view of this paper is rather different 
from that of [30], we have found it most convenient to give a self-contained 
account of the material. 

3.1 Representations and hyperbolic structures. A (complete, oriented) hy- 
perbolic 3-manifold is the quotient of the hyperbolic 3-space H3 by a discrete, 
torsion-free group F of orientation-preserving isometries. The group of orienta- 
tion-preserving isometries of H3 can be identified with PSL2(C) = SL2(C)/{ + 1), 
and any discrete, torsion-free subgroup of PSL2(C) acts freely and properly 
discontinuously on H3. Two hyperbolic 3-manifolds F \ H3, F' \ H3 are isometric 
by an orientation-preserving isometry (and will be identified) if and only if F and 
F' are conjugate in PSL2(C). Thus with a hyperbolic 3-manifold M we can 
associate a representation of 7r1(M) in PSL2(C) which is canonical up to 
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equivalence; this representation is faithful and its image is discrete and 
torsion-free. It follows from results proved in [12] that M can be identified 
diffeomorphically with the interior of a possibly noncompact manifold-with- 
boundary M, whose boundary components are tori, in such a way that every 
rank-two free abelian subgroup of 7T,(M) m 7T,(M) is contained in a peripheral 
torus subgroup, i.e. a conjugate of the image under inclusion of 7r1(T) for some 
incompressible component T of WM. (Since M must clearly be irreducible, T 
cannot have a compressible component unless M R2 KX S1.) A peripheral torus 
subgroup of 7T1(M) C PSL2(C) is conjugate to a group of cosets of matrices of 
the form (1 X), X E C; in fact, it is easily seen that every discrete rank-two 
free abelian subgroup of PSL2(C) has this form. In particular, the traces (defined 
up to sign) of the elements of such a subgroup are +2. The volume of M, as a 
Riemannian manifold, is finite if and only if M is compact and 7Tf M) contains no 
abelian subgroup of finite index. 

3.1.1. PROPOSITION. (Thurston). Let M be a hyperbolic 3-manifold. The 
canonical representation of 7T,(M) in PSL2(C) may be lifted to a representation 
in SL2(C). 

Proof. Let VP, VP denote the principal bundles of unit tangent frames to the 
oriented manifolds M and H3, respectively. The action of PSL2(C) on H3 
induces, via differentiation, an action on VP, which is easily seen to be simply 
transitive; thus the choice of a "base frame" (F E ?' gives rise to a diffeomorphic 
identification of 6' with PSL2(C). On the other hand, the covering projection 
p: H3 -- M induces a local diffeomorphism P: 6' --* ?, which maps the fibers of 
the frame bundle ?' diffeomorphically onto the fibers of ?). Since p is a covering 
map, so is P. Now the action of PSL2(C) on 6' restricts to an action of 
F = 7T1(M) (which we identify with a subgroup of PSL2(C)) on 6P. By the chain 
rule we have P o y = P for each y e F. Moreover, since the restriction of P to 
each fiber of the SO(3)-bundle ?' is 1-1, it is clear that F acts transitively on the 
fibers of 6) as a covering space of ?). Thus 6) is a regular covering space with 
covering group F; and by using the above identification of i with PSL2(C) we 
have-P w1 F \ PSL2(C). 

Let f denote the inverse image of F in SL2(C) under the quotient 
homomorphism 4. Then ' - F \ SL2(C); since SL2(C) is simply connected, 
7,(9P) t~ r. But M, as an orientable 3-manifold, is necessarily parallelizable, so 
that ? t M X SO(3). Thus Fr 1t ,(?7 ) t F X Z2. Since F is torsion-free, and 
since the kernel of 4 has order 2, 4 must map the first factor in this direct-prod- 
uct decomposition of F isomorphically onto F, and the conclusion follows. D2 
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3.2 Dimensions of varieties of characters. The following result appears, in 
quite different language, in [30]. 

3.2.1. PROPOSITION. (Thurston). Let N be a compact orientable 3-manifold. 
Let po: 7r(N) -* SL2(C) be an irreducible representation such that for each torus 
component T of aN, p0(im( rj(T) -- r(N))) ? { + 1). Let R0 be an irreducible 
component of R(,rn(N)) containing po. Then X0 = t(RO) (which by 1.4.4 is an 
affine variety) has dimension ?s - 3X(N), where s is the number of torus 
components of WN. 

Proof (Thurston). By 1.5.3, the conclusion is equivalent to the assertion that 
dim RO ? s - 3X(N) + 3. We shall prove this by induction on s. First suppose 
that s = 0. We may assume that aN # 0, for otherwise X(N) = 0 and there is 
nothing to prove. Now N has the homotopy type of a finite 2-dimensional 
CW-complex K with one 0-cell and, say, m 1-cells and n 2-cells. Thus 7n1(N) has a 
presentation ( g. * .. ,gm: rl = = rn = 1). Define a regular map f: SL2(C)m 
-- SL2(C)n by f(x1,. . . ,x = (ri(x1,.. ,Xm))Ii In, where ri(x1,. . . X is the 
matrix obtained by substituting x; for g, in the word ri. Then R(,r1(N)) = 

f-'(1, 1,... ,1). Thus R(,r1(N)) is the inverse image of a point under a regular 
map from a 3m-dimensional affine variety to a 3n-dimensional affine variety, 
and hence each of its irreducible components has dimension ? 3m - 3n = 
-3X(K) + 3 =-3X(N) + 3, as required. 

Now suppose that s > 0. Let T be a torus component of WM. Since T is 
incompressible, there is an element a E sr1(N), represented by a simple closed 
curve in T, such that po(a) =# ? 1 SL2(C). By 1.5.1, there is an element y of 
7n1(N) such that po restricts to an irreducible representation of the subgroup 
generated by a and y, and such that XO(y) # ?2. 

There exists a manifold N', such that N is obtained from N' by the addition 
of a 2-handle to a genus 2 boundary component T' of N', and such that the 
following conditions hold. There is a standard basis a', /B', y', 3' of 7r1(T') so that 
a' and y' are mapped to a and y under the natural surjection i* : r1(N') '-* (N), 
and the 2-handle is attached to T' along a simple closed curve which represents 
the conjugacy class of 8'. The manifold N' can be constructed by removing from 
N a neighborhood of an embedded loop, based, on T, which represents the 
element y of ru1(N). Let a denote the element [a', /3'] = [y', 8'] of 7u1(N'). 

The representation p6 = po o i*: r,(N') -* SL2(C) is irreducible since i* is a 
surjection. Since the kernel of i* is the normal closure of 8', we may identify 
R(7T,(N)) with the closed algebraic set W C R( rn(N')) consisting of representa- 
tions p of sr1(N') such that p(3') = 1. (This identification implicitly uses the fact 
that the isomorphism type of R(,r1(N)) does not depend on the choice of 
generators of an1(N).) In particular, Ro is an irreducible component of R'I n W, 
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where Ri' is an irreducible component of R(,r,(N')) containing p6. By the 
induction hypothesis, 

dim R' (s- 1) -3X(N') + 3 = s-3 (N) + 5. 

We will show that Ro is an irreducible component of the inverse image of a point 
under a regular map f: R'0 -- C2, from which it follows that dim R' ? 

s - 3X(N) + 3. 
Specifically, let f: R' --* C2 be defined by f(p) = (T(3'), r(a)). Clearly 

R0 C f 1(2, 2). Let Y denote the set of all representations p E R'0 whose 
restrictions to the subgroup of wl(N') generated by a' and y' is reducible. By 
1.4.2, Y is a closed algebraic set. Let Z denote the closed algebraic set consisting 
of all p E R'0 such that .,,,(p) = Xp(y') = ?2. Since i*(y') = y, the defining 
properties of the element y guarantee that pO 4 Y U Z. Hence in order to prove 
our claim it is enough to prove that f-1(2, 2) C (R'0 n w) u Y u z. 

Let p ef-1(2,2) be given. Then Xp(3') = Xp(a) = 2. By 1.5.5, the restric- 
tions of p to the subgroups of r,(N') generated respectively by (a, ,B) and {y, 8) 
are reducible. Thus p(a) has an eigenvector in common with each of the matrices 
p(a'), p(y'). In the case p(a) # 1, p(a) has a unique 1-dimensional invariant 
subspace, and it follows that p c Y. 

Now consider the case p(a)= 1. Then p(y') and p(3') commute. Since 
p(3') has trace ?2, either p(3') = 1 or p(y') has trace ?2; thus either p c W 
or p c Z. This establishes the inclusion f-'(2,2) c (W n R'0) U Y U Z. E 

Now let M denote a hyperbolic 3-manifold of finite volume. Fix a faithful 
representation of 7T,(M) in PSL2(C) with discrete image. Using 3.1.1, fix a lifting 
po r1(M) -* SL2(C) of this representation. Then Po is faithful and has discrete 
image. Choose an irreducible component Ro of R(H) containing po. The 
representation po is necessarily irreducible. (In fact, the argument given in [12] 
shows that po could be reducible only if II were abelian, and this would 
contradict the assumption that M has finite volume.) Hence by 1.4.4, X0 = t(RO) 
C X(ll) is an affine variety. 

If M is not closed, it may be seen at once from 3.2.2 that dim X0 > 0; thus 
XO contains at least one curve. One can apply Theorem 2.2.1 to the ideal points 
of such a curve to obtain splittings of 7r1(M), which by 2.3.1 give rise to 
systems of incompressible surfaces in M. This is the method that will be used in 
Section 5 of this paper and in [6] and [7]. 

4. Haken manifolds and virtual Haken manifolds 

We begin by reviewing some deep results, due to Thurston and Mostow, 
about hyperbolic manifolds. We shall then show how to combine these with 
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results due to Scott, Waldhausen, and Meeks-Simon-Yau to get a structure 
theorem (4.2.2) for "almost sufficiently large" 3-manifolds up to homotopy type. 
Although this result follows easily from several known theorems, it does not seem 
to be generally understood. 

4.1. Thurston's and Mostow's theorems. Recall that a Haken manifold is a 
compact, orientable, irreducible 3-manifold that is "sufficiently large," i.e. con- 
tains some incompressible surface. The last condition is automatic in the case of a 
bounded manifold. By a virtual Haken manifold we shall mean a compact, 
orientable, irreducible 3-manifold that is "almost sufficiently large," i.e. that has 
a finite-sheeted covering containing an incompressible surface. By a recent 
theorem due to Meeks, Simon and Yau [19], a finite-sheeted covering of an 
orientable, irreducible 3-manifold is irreducible. Thus every virtual Haken mani- 
fold is covered by a Haken manifold. 

Thurston's Uniformization Theorem [31] characterizes the Haken manifolds 
whose interiors have hyperbolic metrics. The following version of Thurston's 
theorem, which is equivalent to the original version via the strong form of the 
torus theorem ([15], [16]) is the most convenient form for the applications in this 
paper. 

4.1.1. THURSTON'S UNIFORMIZATION THEOREM. Let N be a Haken manifold 
whose boundary components (if any) are all tori. Then either N is Seifert-fibered, 
or N contains an incompressible torus which is not boundary-parallel, or N is 
homeomorphic to M (? 3) for some hyperbolic manifold M offinite volume. [] 

Thurston has conjectured that 4.1.1 is true for every closed, orientable, 
irreducible 3-manifold M, even if M is not assumed to contain an incompressible 
surface. In 4.2.1 below we shall show that up to homotopy type this is true for all 
virtual Haken manifolds. In Section 5 we shall present some new evidence for 
Thurston's conjecture in the case that M is, for example, a regular branched cover 
of S3. 

The next result is the 3-dimensional closed case of the theorem proved by 
Mostow in [22]. (For another proof, due to Gromov, see [30].) 

4.1.2. MOSTOW RIGIDITY THEOREM. Let f: M -* M' be a diffeomorphism 
between closed hyperbolic 3-manifolds. Then f is homotopic to an isometry. [] 

(We have restricted attention to closed manifolds as a matter of conve- 
nience; 4.1.2 remains true if M and M' are hyperbolic 3-manifolds of finite 
volume.) 
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We shall be using Mostow's theorem in an equivalent form, Proposition 4.1.5 
below. A proof of 4.1.5 is actually implicit in Mostow's proof of his rigidity 
theorem; however, for the reader's convenience we shall show, conversely, how 
to derive 4.1.5 from 4.1.2. First we review some elementary facts. 

If the hyperbolic 3-space H3 is identified with the open upper half-space in 
R3, every isometry of H3 extends to the 1-point compactification H3 of the closed 
upper half-space. Topologically, H3 is a closed ball; its boundary is the "sphere at 
infinity" S.,. We may identify S. with the Riemann sphere so that the self- 
homeomorphisms of S. induced by isometries of H3 are the classical homo- 
graphies (Mobius transformations) and anti-homographies. A hyperbolic isometry 
is uniquely determined by the induced homography or anti-homography. 

4.1.3. PROPOSITION. Let M and M' be closed hyperbolic 3-manifolds, let 
Fo F,: M -- M' be homotopic diffeomorphisms, and suppose that F0 is an 
isometry. Let Fo: H3 -* H3 be a lifting of F0, so that Fo is an isometry and 
induces a nomography or anti-homography ft: SO -> S.. Then F1 has a unique 
lifting F1 :H3--* H3 which extends to a homeomorphism of H3 and induces the 
homeomorphism ft on SO. 

Proof. The uniqueness is clear, for any two liftings of F1 differ by a covering 
transformation; and a covering transformation, as a hyperbolic isometry of H3, 
cannot induce the identity on S,, unless it is itself the identity. To prove 
existence, we fix a smooth homotopy F: M X I M from F0 to F1. By the 
covering homotopy property, there is a homotopy F:H3 -* H3 such that (F)o= 
F0. We shall show that F1 = (F)1 has the desired properties. 

It suffices to show that if (xi)j?0 is a sequence of points in H3 converging to 
x E SOON then (F1(xi))2>0 converges to ,(x). For i ? 0, the smooth path at : I 
H3 defined by &i(t)= F,(xi) has bounded length as i -x o because F is a lift of 
the smooth homotopy F between closed manifolds. Thus the hyperbolic distance 
between yi = Fo(xi) and zi = Fl(xi) is bounded. But it is not hard to show that 
if (yj)ji0 and (zj)j?0 are any sequences of points in H3 such that the hyperbolic 
distance between yi and zi is bounded as i -x o, and if (yi) converges in H3 to a 
point y E S,, then (zi) also converges in H3 to y. Since (Fo(xi)) converges to 
i(x), so does (Fl(xi)). D 

4.1.4. COROLLARY. The isometry in the conclusion of 4.1.2 is unique. D 

4.1.5. PROPOSITION. Let f: M -* M' be a diffeomorphism of closed hyper- 
bolic 3-manifolds. Then any lifting off to H3 extends to a homeomorphism of H3 
which restricts to a homography or anti-homography on S,,. 

Proof This is immediate from 4.1.2 and 4.1.3. D 
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4.2. Virtual Haken manifolds. The following consequence of the Mostow 
rigidity theorem was pointed out to us by Thurston, and John Morgan supplied 
some help with the argument. 

4.2.1. PROPOSITION. Let M be a closed, orientable 3-manifold. Suppose that 
some finite-sheeted covering space of M has a hyperbolic metric. Then M is 
homotopy-equivalent to a hyperbolic 3-manifold. 

Proof Since every finite-index subgroup of 7T1(M) contains a normal finite- 
index subgroup, M has a finite-sheeted regular covering space M which is 
hyperbolic. We may identify the universal covering space of M with the universal 
covering of M, and hence with H3; let r and r denote the groups of covering 
transformations of H3 over M and M respectively. Every y E r is a lifting of 
some covering transformation of M over M; hence by 4.1.5, y extends to a 
homeomorphism of H3 which restricts on SOO to a Mobius transformation p(y) E 
PSL2(C). This defines a representation p of r in PSL2(C). Since f c r is a group 
of hyperbolic isometries, the homomorphism p I F --, PSL2(C) is injective. But 
F has finite index in r, and r is torsion-free since it acts continuously and 
without fixed points on the contractible, finite-dimensional space H3. Hence 
p: rF - PSL2(C) is injective. Moreover, p(r) C PSL2(C) is discrete since it has 
the discrete subgroup p(F) of finite index. Since p(r) is also torsion-free, it is 
isomorphic to the fundamental group of a hyperbolic 3-manifold M'. Since M and 
M' have isomorphic fundamental groups and are both covered by the contract- 
ible manifold H3, they are homotopy-equivalent. D 

4.2.2. THEOREM. Let M be a virtual Haken manifold without boundary. 
Then either M is Seifert-fibered, or M contains an incompressible torus, or M is 
homotopy-equivalent to a hyperbolic 3-manifold. 

Proof In the language of [27], the torus conjecture is said to hold in a closed 
irreducible 3-manifold M if every essential singular torus in M, i.e. every map 
f: T2-* M which induces a monomorphism of fundamental groups, is homotopic 
to a map whose image is contained in a Seifert-fibered submanifold of M whose 
boundary tori are incompressible in M. Theorem 1.2 of [27], which follows from 
work done by Scott, Waldhausen, and Meeks-Simon-Yau, asserts that the torus 
conjecture holds in every virtual Haken manifold M. Hence if there exists an 
essential singular torus in M, either M is Seifert-fibered or M contains an 
incompressible torus. 

Now consider the case that there is no essential singular torus in M. Since M 
is a virtual Haken manifold, some finite-sheeted covering space M of M is a 
Haken manifold. Clearly there is no essential singular torus in M. In particular M 
contains no incompressible torus; and M cannot be Seifert-fibered, because in 
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every Seifert-fibered space with infinite fundamental group there is an essential 
singular torus. Hence, by 4.1.1, M is hyperbolic; and so by 4.2.1, M is homotopy- 
equivalent to a hyperbolic 3-manifold. F 

5. Regular branched covering spaces 

In this section we give new proofs of the generalized Smith conjecture [3] 
and of the results due to Davis and Morgan [9] on finite group actions on 
homotopy 3-spheres. Our proofs yield new results, apparently inaccessible by 
other methods, on the structure of closed, orientable 3-manifolds which are 
regular branched covers of other manifolds branched over non-trivial links. 
Theorems 5.1.2, 5.2.4, and 5.2.7 provide evidence that the conjecture of 
Thurston's stated in Section 4 may be true for the non-simply-connected prime 
factors of such manifolds. Moreover, many open questions on 3-manifolds, which 
pre-date Thurston's conjectures, can be proved for this class of manifolds by 
means of our Theorem 5.2.4; we give several examples of this in subsection 5.3. 

The proof of the Smith conjecture in [3] depends on showing that a regular 
branched covering space N branched over a "sufficiently non-trivial" link either 
contains an incompressible surface or has a fundamental group that can be 
represented non-trivially in PSL2(F) for some finite field F. In our proof, given 
in 5.1, the finite field F is replaced by C. In 5.2 we show, roughly speaking, that 
if one of the ramification indices of the covering is greater than 5, the representa- 
tion in PSL2(C) can be taken to have infinite image. (This is strictly true if the 
group of covering transformations contains a normal 2-complement (Theorem 
5.2.7); otherwise one gets (5.2.4) a representation with infinite image of a 
subgroup of 7T,(N) whose index is a power of 2.) The Davis-Morgan theorem is 
derived as a corollary to 5.2.4. In 5.3 we apply 5.2.4 to prove analogues for 
certain regular branched coverings of two known theorems on Haken manifolds: 
Waldhausen's theorem [36] on 3-manifolds whose fundamental groups have 
center, and Evans and Jaco's theorem [11] on free subgroups of 3-manifold 
groups. 

5.1. Representations in PSL2(C) and the Smith Conjecture. Let N denote a 
regular branched covering space of a closed orientable 3-manifold M, branched 
over a link in M. This means that M is the quotient of N under the action of a 
finite group r of orientation-preserving diffeomorphisms such that, for each 
x E N, the stabilizer rx is cyclic; and for some x, rx -# { 1. The subset S of N 
consisting of all points with non-trivial stabilizers will be called the singular set. 
It is easy to show that S is a 1-manifold. Thus L = s/r is a link in M, called the 
branch set. 
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Suppose that K is a component of L. An element ,i of 'n1(K - L) will be 
called a meridian of K if it belongs to the unique conjugacy class in 7T(M - L) 
which is represented by the boundary of an embedded disk in M that meets K in 
one point. The ramification index of K is the order of the stabilizer of any point 
of S in the inverse image of K. (AlR such stabilizers are non-trivial and conjugate 
in r.) 

Let F be the group of all lifts of diffeomorphisms in r to the universal cover 
N of N; in the language of orbifolds (see Thurston, [30]), F would be called the 
fundamental group of the orbifold M. The group r acts on N with cyclic 
stabilizers, and 71(N) is embedded in f as the group of lifts of the identity map. 
Let S denote the singular set in N. Since F acts freely on N - S with quotient 
M - L, we may view F as a quotient of r71(M - L); the stabilizers in F are 
generated by the images of the meridians of components of L. 

Let 4): 7T,(M - L) -> F be the quotient map and let ( ) denote normal 
closure. It is not difficult to check that, if i 1,... ,[L and rl,... , ,r are the 
respective meridians and ramification indices of the components K1,... .K of L, 
we have 

(i) T = ( - L)/(r4,...rs 

(ii) r/'n1(N) = r, 

(iii) 71l(M)= (yyy(S) 

We remark that if M is a rational homology sphere then r has a canonical 
quotient isomorphic to Zr, D Zr2 D ... * r. 

If Li is a link in Mi for i = 1, 2 then we define L to be a connected sum of 
(M1, L1) and (M2, L2) if L is a link in M = Ml # M2 constructed as follows. For 
i = 1, 2, let Bi be a 3-ball in Mi such that the pair (Bi, Bi f Li) is diffeomorphic 
to the standard (B3, B') pair. Construct M, # M2 by identifying the boundaries 
of the deleted pairs (M1- Int B1, L1 - Int(B1 fnL1)) and (M2-Int B2, 
L2- Int(B2 n L2)) and let L be the union of L, - Int(B, n L1) and 
L2- Int(B2 n L2). We will say that a non-trivial link is prime if it cannot be 
decomposed as a connected sum of two non-trivial links; here a trivial link is 
defined to be a link of one component which bounds a disk. Every non-trivial link 
in a closed 3-manifold is a finite connected sum of prime links (cf. [13, p. 3]). A 
link is splittable if its complement is the connected sum of two non-closed 
3-manifolds. 

Define L to be a sufficiently large link if M - L is irreducible and if there 
exists a surface S in M such that, for some open tubular neighborhood %(L) of 
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L, S - (S n (L)) is a surface which is incompressible and not boundary-paral- 
lel in M - (L). 

Throughout this section, N will denote a regular branched cover of a closed 
orientable 3-manifold M, branched over a link L with components K1,..., KS; 
N, S5 r, r, tij, and ri will be defined as above. 

We will need the following theorem, which is essentially proved by Gordon 
and Litherland in [13]. 

5.1.1. THEOREM. Suppose that L is prime and sufficiently large. Then either 
N contains an incompressible surface of positive genus or both M and N contain 
non-separating 2-spheres. 

(In [13] the definition of a "sufficiently large link" requires that M - L 
contain a closed incompressible surface. However the proof applies verbatim 
under the weaker hypothesis given above.) C: 

5.1.2. THEOREM. Suppose that L is prime and non-splittable. Then one of 
the following alternatives holds. 

(I) M - L is the connected sum of a Seifert-fibered space and a closed 
manifold. 

(II) N contains a closed incompressible surface of positive genus. 
(III) Both M and N contain non-separating 2-spheres. 
(IV) There is a representation of f in PSL2(C), which is not diagonalizable 

and whose restriction to each stabilizer f x E N, is faithful. 

Proof Since L is not splittable, the prime decomposition of M - L contains 
only one non-closed factor, which may be regarded as the complement of a link 
L' in a connected summand M' of M. If the prime manifold M' - L' contains a 
non-separating 2-sphere, then (III) holds. Hence we may assume that M' - L' is 
irreducible. 

Note that N has a connected summand N' which is a regular branched cover 
of M', branched over L'; and that each component of L' has the same ramifi- 
cation index as the corresponding component of L. If L' is a sufficiently large 
link in M' then by 5.1.1, either (II) or (III) holds. On the other hand, if M' -L' 
is Seifert-fibered then (I) holds. 

There remains the case in which L' is not sufficiently large and M' - L' is 
not Seifert-fibered. Then it follows from 4.1.1 that M' - L' has a hyperbolic 
metric of finite volume. Let p0: -r"(M' - L') -* SL2(C) be a faithful representa- 
tion whose image is discrete (see 3.1.1) and let Ro be an irreducible component 
of R(,r1(M' - L')) containing p0. We shall show that Ro contains a representa- 
tion p, which is not diagonalizable, such that p(pi4) has order 2ri for i = 1,... .5s 
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where K.... . K' are the components of L' and 1.... . are the corresponding 
meridians. The representation p' -rT(M -L) -* PSL2(C), defined by composing 
p on the left with the quotient map SL2(C) -* PSL2(C) and on the right with the 
projection of the free product 7"1(M - L) to its free factor 7"1(M' - L'), will have 
the property that p'(pi) has order ri. Hence p' will define a representation p" of 
F in PSL2(C), which is not diagonalizable; and since the stabilizers rF of points of 
N are the images of meridians in 71(M - L), the restriction of p" to each rF will 
be injective. Thus alternative (IV) will hold in this case. 

Set XO = t(RO) C X(71(M' - L')); by 1.4.4, X0 is an affine variety. Con- 
sider the regular map f: X0 -> Cs defined by 

f(x) = (X(GL) J ... XGs)) 

Now, the conjugacy classes of elements of trace # ?2 in SL2(C) are 
determined by their traces. In particular, an element of trace eqri/r + e- vi/r will 
have order 2r in SL2(C), and its image in PSL2(C) will have order r. Let us 
consider the point u c Cs C PS defined by 

U = (e 7i/r1 + e-Ti/r, eTi/rs + e- ri/rs). 

Assume for the moment that f is surjective, so that there is a character X1 C XO 
such that f(X1) = u. Then in order to show that (IV) holds, it is enough to show 
that there exists p e Ro with X, = X1i such that the image of p in SL2(C) is not 
diagonalizable. We know by 1.5.3 that the inverse image of X under t I Ro has 
dimension ? 3 for each X e X0. Thus there is a 3-dimensional affine subvariety 
of Ro consisting of representations with character Xi. We claim that the set B of 
diagonalizable representations in t-'(Xl) is contained in a closed algebraic set of 
dimension at most 2. There are only two diagonal elements of SL2(C) with a 
given trace; hence B is a finite union of equivalence classes of representations. 
Since a non-trivial diagonal subgroup of SL2(C) has a one-dimensional central- 
izer, each equivalence class in B is the image of SL2(C) under a map whose fibers 
are 1-dimensional. This proves the claim and it follows that B is a proper subset 
of t-'(Xo); this establishes the existence of the desired representation. 

To complete the proof of the theorem it is now enough to show that f is 
surjective. Suppose to the contrary that w 4 f(XO) for some w e C'. We have 
dim X0 ? n by 3.2.1. Choose a point x e X0, and let D C C' be an affine line 
joining w to v = f(x). Then any irreducible component of the non-empty 
algebraic set f '(D) has dimension ? (dim XO) - (n - 1) ? 1. (This follows 
from [23, Corollary 3.14] applied to a set of n - 1 linear polynomials: the 
functions 1i o f, where 11, ... . in- i1 are linear polynomials on Cn whose zero set is 
D.) Hence f '(D) contains an affine curve C. Now, using the notation of 
Section 1, consider the map fI C: C -* D of projective curves. It is either 
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constant, in which case 'C(fl = v for every ideal point x of C, or surjective, in 
which case fI C(f) = w for some ideal point x of C. In either case, there is an 
ideal point x of C for which is finite for j = 1,... .,n. By the Fundamental 
Theorem 2.2.1, x determines a non-trivial splitting of 71(M' - L') for which the 
meridian of each component of L' belongs to a vertex group. Now apply 2.3.1, 
taking YuC to be a union of meridian curves, one in each component of M' - L'. 
This gives a non-boundary-parallel incompressible surface in M' - L' whose 
boundary curves are all meridians. Thus L' is a sufficiently large link: contradic- 
tion. FE 

5.1.3. COROLLARY. If r is cyclic and L is a non-trivial link, then either 
7T,(N) has a non-trivial representation in PSL2(C), or N contains an incompressi- 
ble torus. 

Proof. Since L is a connected sum of prime links, and N is a connected sum 
of cyclic branched covers of these prime links, we may assume that L is prime. 
Moreover, we may assume that L is a knot; because otherwise by Smith theory 
we have H1(N; Z) -# 0, and so -7T,(N) has a representation in PSL2(C) with 
non-trivial cyclic image. Thus one of the alternatives (I)-(IV) of 5.1.2 must hold. 

If (I) holds then N has a canonical Seifert-fibered connected summand N'. It 
is well-known that by computing its Seifert invariants one can show that N' is not 
a 3-sphere. Thus some non-trivial quotient of 7T1(N') is a Fuchsian group and 
hence embeds in PSL2(R) C PSL2(C). 

If (II) holds, then 7T1(N) -# 1; moreover, by 4.1.1, some connected summand 
of N is hyperbolic or Seifert-fibered or contains an incompressible torus. In either 
of the first two cases, -7T1(N) has a non-trivial representation in PSL2(C). 

If (III) holds then g (N) has an infinite cyclic quotient which can be 
embedded in PSL2(C). 

If (IV) holds then, since f/7T1(N) is the cyclic group r, the representation of 
r given by (IV) restricts to a non-trivial representation of 7T1(N). g 

5.1.4. COROLLARY (Generalized Smith Conjecture). if r is cyclic and L is 
a non-trivial knot then 'n1(N) 7# 1. D 

5.2. Infinite representations and group actions on homotopy 3-spheres. The 
following two lemmas, which will be used in the proof of Theorem 5.2.4, are 
consequences of theorems due to Tollefson. 

5.2.1. LEMMA. Let T be an involution of the bounded orientable 
Seifert-fibered manifold Q0 such that T I a Q is homotopic to the identity map on 
aQ0. Then the quotient of Q0 by T has a Seifertfibration in which the branch set 
(Fix T)/T is a finite union of fibers. 
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Proof The hypothesis that T IaQ0 be homotopic to the identity implies that T 
preserves orientation and hence that each component of the fixed set of T is a 
1-manifold. A theorem of Tollefson [34] states that T is fiber-preserving in some 
Seifert fibration of Q0. Since T aQ0 is homotopic to the identity, the cyclic 
subgroup of g,(Qo) whose generator is represented by a non-singular fiber is 
fixed by the automorphism induced by T. Thus T cannot reverse the orientation 
of any invariant fiber. If x is any fixed point of T then T restricts to an 
orientation-preserving homeomorphism of the fiber through x which has order 
< 2 and has a fixed point. Thus T is the identity on the fiber. This shows that the 
fixed point set of T is a finite union of fibers, and the conclusion of the lemma 
follows. L] 

5.2.2. LEMMA. Let ro be a normal subgroup of r with index a power of 2. 
Let MO = N/ro and let Lo C MO be the branch set of the regular branched 
covering of MO by N. If MO - Lo is the connected sum of a Seifert-fibered space 
and a closed manifold, then so is M - L. 

Proof Since 2-groups are nilpotent, we may reduce to the case when ro has 
index 2 in r. The covering translation for MO over M restricts to an involution T 
of MO - Lo, A theorem due to Tollefson (Lemmas 1 and 2 of [33]) implies that if 
MO- Lo contains a 2-sphere which does not bound a ball, then it contains a 
2-sphere I such that either 2 = T(2) or E n T(2) = 0. By combining this 
with Kneser's Theorem, one can show that MO - Lo contains a family of disjoint 
2-spheres which is invariant under T, such that the manifold Q1, obtained by 
cutting along these 'spheres and capping off, has only irreducible connected 
components. Since MO - Lo is the connected sum of a closed manifold with a 
necessarily irreducible Seifert fibered manifold Q0, it follows from the uniqueness 
of the prime decomposition that Q1 has only one non-closed component and that 
it must be homeomorphic to QO. 

Thus T induces an involution of Q0. By Lemma 5.2.1, the quotient of QO by 
T will have a Seifert fibration in which the branch set is a union of fibers. It 
follows that M - L is a connected sum of a Seifert fibered space and a closed 
manifold. 

We need one more lemma for the proof of Theorem 5.2.4. 

5.2.3. LEMMA. If 'r2(N) = 0 then L is a prime link and g2(M - L) = 0. 

Proof Suppose L were not prime. Let 2 be a 2-sphere which meets L in 
two points, and separates L into two nontrivial links. Let z be the inverse image 
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of I in N. There must be a component N' of N - z whose closure contains only 
one component 2' of 2, since otherwise some component of z would be 
non-separating. The group of covering translations which map 2' to itself is a 
non-trivial cyclic group, and the quotient of N' by this group is a component of 
M - E. Thus N has a connected summand which is a cyclic branched covering 
space, branched over a non-trivial link. By Corollary 5.1.3, this summand of N is 
not simply connected. Thus N - N' must be simply connected. But N - N' win 
contain a translate of N' unless 2' is invariant under all covering translations. 
However this latter statement would imply that the cover was cyclic, and 
Corollary 5.1.3 would then show g1(N - N') # 1. Thus the first assertion is 
established. 

Let 2 be a 2-sphere in M - L, and let L be the inverse image of 2 in N. 
Since g72(N) = 0, the closure of some component N' of N - z must, as before, 
contain only one component of L. This implies that N' cannot contain any 
components of the singular set in N. But since g72(N) = 0, either N' or N - N' is 
simply connected; since some covering translation maps N' into N - N', N' must 
be simply connected. Thus 2 bounds the contractible image of N' in M - L. 
This shows that g2(M - L) 0 O. C] 

5.2.4. THEOREM. Suppose that 'n2(N) = 0 and that for some i < s we have 
ri > 5. Then either M - L is the connected sum of a Seifert fibered space with a 
closed manifold, or N contains an incompressible torus, or 7r1(N) has a subgroup 
of index a power of 2 which has a representation in PSL2(C) with infinite image. 

Proof We may assume that M is a rational homology 3-sphere, for otherwise 
7TI(N) admits a homomorphism onto Z and hence has an infinite representation 
in PSL2(C). Thus, according to the discussion in 5.1, F has a quotient isomorphic 
to Zrj E Zr2 E e - * Z The cyclic factors in this quotient are generated by the 
images of the stabilizers in r. We may assume that r1 = r2 = rk = 2 and 
that ri 7# 2 for i = k + 1,... ,s. (By hypothesis, k < s.) Let IO be the inverse 
image of Zrk+1 ? *.* e Zr under the quotient map. Then MO - N/IO has a 
regular branched cover No = N/IO n f 1(N) branched over a link Lo in Mo. The 
ramification indices of this covering are all greater than 2, and at least one is 
greater than 5. Note that No is a finite-sheeted covering space of N and that the 
number of sheets is a power of 2. 

By Lemma 5.2.3, applied to the branched covering space No of M05 the 
branch set Lo is a prime link and 72(MO - LO) 0 O. In particular Lo is not 
splittable. Thus one of the four alternatives of Theorem 5.1.2 must hold with Lo 
and Mo in place of L and M. 
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If MO - Lo is the connected sum of a Seifert fibered space and a closed 
manifold, then by Lemma 5.2.2, so is M - L. (One can show that the closed 
summand of M - L is a homotopy 3-sphere, but we do not need this.) 

If No contains an incompressible surface of positive genus then since 
vr2(N) = 0, N will be the connected sum of a virtual Haken manifold with a 
homotopy 3-sphere. By 4.2.2, either N contains an incompressible torus, or N is 
homotopy equivalent to a Seifert fibered space or a hyperbolic 3-manifold. 

If N is homotopy equivalent to a Seifert fibered space, then, since 7T,(N) is 
infinite, 7T1(N) has a quotient which is an infinite Fuchsian group in PSL2(R) C 
PSL2(C). If N is homotopy equivalent to a hyperbolic manifold then rl(N) 
obviously has an infinite representation in PSL2(C). 

The third alternative of Theorem 5.1.2, that M0 and No contain non-separat- 
ing 2-spheres, cannot arise because r2(No) = 0. 

The last alternative is that No contains no closed incompressible surfaces and 
that there exists a representation a of PO in PSL2(C) which has non-cyclic image 
and which maps each (cyclic) stabilizer in ro to a subgroup of the same order in 
PSL2(C). Hence by the hypothesis of the theorem, some element of a(r0) has 
order > 5. Moreover, by the proof of 5.1.2 and the fact that T2(MO - LO) = 0, 
MO- Lo is the connected sum of a hyperbolic manifold of finite volume with a 
homotopy 3-sphere, and a is defined by a representation p: l(Mo - LO) -- 
SL2(C) which lies in an irreducible component RO of R(,r1(Mo - LO)) containing 
a faithful representation p0 with discrete image. If p has infinite image then the 
conclusion of the theorem follows, since a will then restrict to a representation of 
7T,(No) C JO with infinite image. 

Now suppose that a (and hence p) has a finite image. The only non-cyclic 
finite subgroups of PSL2(C) are the dihedral groups and the groups of symme- 
tries of the five Platonic solids. However, a( ro) cannot be one of the latter groups 
since it contains an element of order greater than 5. Hence a(T0) must be 
dihedral. 

Thus there is a subgroup IF of index 2 in PO such that a has cyclic image. 
We will show that Fl has a representation with infinite image which has the same 
character as a Ir This will follow from a variation of an argument used in the 
proof of Theorem 5.1.2. 

Let M1 N/F1. We claim that M1 is an unbranched two-sheeted covering 
space of M0, i.e., that all the stabilizers in PO are contained in P1. Indeed, if a 
stabilizer in ro were not contained in rl, its image in the dihedral group G would 
have order 2; since a preserves order of stabilizers it would follow that PO 
contained a stabilizer of order 2. This contradicts the construction of To, and 
proves that M1 is an unbranched covering of Mo, 
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Let L1 denote the branch set in M1 for the covering of M1 by N1 = 
N/Irl n7T,(NO). The manifold M1 - L1 is the connected sum of a hyperbolic 
3-manifold of finite volume with a homotopy 3-sphere; and the restriction p1 of po 
to (Ml - L1) is a discrete faithful representation of ,(Ml - L1), which by the 
remarks at the end of Section 3 is irreducible. Let R1 be an irreducible 
component of R(7T,(Ml - L1)) which contains the image of RO under the 
restriction map: R(7Tl(MO - LO)) --R(T(Ml - L1)). Set X1 t(Rl) C 

X(7T,(Ml - L1)). Of course X1 contains the character Xi of p1, as well as the 
character X of p ISTj(Mj-Lj) Since Pi is an irreducible representation, it follows, 
as in the proof of Theorem 5.1.2, that the inverse image of X under tIR1 
is 3-dimensional and hence contains a non-diagonalizable representation 

,: - (Ml-L1) -- SL2(C). 
We shall show that 4 determines a representation of Fi. This amounts to 

showing that for each meridian u of L1, 4(u) has order equal to 2r where r is the 
ramification index corresponding to u. Note that since M1 is an unbranched 
covering space of MO, , is also a meridian in Tl(MO - LO) D 7,(Ml -L1) with 
ramification index r. Since p determines the representation a of TO which 
preserves the orders of stabilizers, we have tr p(u) = + (, where o is a 
primitive 2r-th root of unity. But 4 and p I 7T,(Ml-L1) have the same character, 
and so tr 4(u) = o + (; since r > 1, it follows that 4(u) has order 2r. Thus we 
may regard 4 as a representation of Fi, 

Now p I l(Ml - L1) is a reducible representation since its image is abelian; 
hence 4 is reducible by 1.2.1. We may therefore assume that 4(Fl) consists of 
upper triangular matrices. Set K = ker(a I IF,). Then 4(K) has finite index in 
4(Fl); moreover, 4(K) consists of upper triangular matrices with l's on the 
diagonal, and is therefore free abelian. Thus K has infinite abelianization. Since 
7T,(Nl) is a subgroup of finite index in IF, it too has a subgroup of finite index 
with infinite abelianization. Hence N has a finite-sheeted cover with positive first 
Betti number. By assumption 7T2(N) = 0, so N is the connected sum of a virtual 
Haken manifold with a homotopy 3-sphere. Therefore either N contains an 
incompressible torus or 7T,(N) has a representation in PSL2(C) with infinite 
image. L 

5.2.5. COROLLARY. If, for some i ? s, ri > 5, then either N has infinite 
fundamental group, or M - L is the connected sum of a Seifert fibered space 
and a closed manifold. El 

This corollary is essentially equivalent to the following theorem of Davis and 
Morgan [9]. 
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5.2.6. COROLLARY. Let F be a finite group of diffeomorphisms of a homo- 
topy 3-sphere. If all of the stabilizers in IF are cyclic, and one has order greater 
than 5, then r acts essentially linearly. 

A group of diffeomorphisms is said to act essentially linearly on a homotopy 
3-sphere I if there is an invariant family of disjoint homotopy 3-cells in 2 such 
that S3 is obtained by collapsing each one to a point, and such that the induced 
group of homeomorphisms of S3 is conjugate to a group of linear diffeomor- 
phisms. 

Corollary 5.2.5 implies that the quotient of 2 by r is the connected sum of a 
closed manifold with a Seifert fibered space which contains the branch set as a 
union of fibers. The closed manifold must be a homotopy 3-sphere, which gives 
rise to the invariant family of homotopy 3-cells. The induced action on S3 
preserves the fibers in a Seifert fibration of the sphere; it follows that it is 
conjugate to a linear action. The reader is referred to [9] for the details of this 
argument. LI 

As a final remark on Theorem 5.2.4 we note that the conclusion can be 
strengthened if r is assumed to have a normal 2-complement (i.e., a normal 
subgroup of index a power of 2 whose order is prime to 2). 

5.2.7. THEOREM. Suppose that r2(N) = 0, that for some i < s we have 
ri > 5, and that r has a normal 2-complement. Then either M - L is the 
connected sum of a Seifertfibered space and a closed manifold, or N contains an 
incompressible torus, or 7r1(N) has a representation in PSL2(C) with infinite 
image. 

Proof We modify the proof of 5.2.4 by defining ro to be the inverse image 
of the normal 2-complement in r under the projection: r -- r. Then 71(N) C 170, 
and hence qr(N) has an infinite representation if ro does. The only properties of 
ro needed in the proof of 5.2.4 are that it be a normal subgroup of r whose index 
is a power of 2 and that no stabilizer in 170 have order 2. LI 

5.3. Applications. 

5.3.1. PROPOSITION. Suppose that L is non-trivial and that ri > 5 for some i. 
Then if vrn(N) has a non-trivial center, N is the connected sum of a Seifert 
fibered space (with orientable decomposition surface) and a homotopy 3-sphere. 

Proof Since 7r1(N) has a non-trivial center, it cannot be a non-trivial free 
product. Hence by Kneser's theorem, N is a connected sum N #2, where 2 is a 
homotopy 3-sphere and No is either an irreducible manifold or S2 X S1. Since 
S2 X S' is Seifert-fibered we may assume that No is irreducible. By 5.2.4, either 
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(a) M - L is the connected sum of a Seifert fibered space with a closed manifold, 
or (b) No contains an incompressible torus, or (c) a subgroup H of finite index in 
7T1(NO) has a representation p in PSL2(C) with infinite image. If (a) holds then No 
is itself Seifert-fibered. If (b) holds then in particular No is a Haken manifold, and 
Waldhausen's theorem in [36] guarantees that No is Seifert-fibered. Now suppose 
that (c) holds. Since in particular rl(NO) is infinite, and No is irreducible, r(NO) 
must be torsion-free; hence the center Z of H is itself non-trivial. If p(Z) # { 1 }, 
then the infinite group p(H) is abelian, because the centralizer of every non-triv- 
ial element of PSL2(C) is abelian. Hence in this case H admits a homomorphism 
onto Z, and so the covering space No of No corresponding to H contains an 
incompressible surface. But No is irreducible by [19], and hence by Waldhausen's 
theorem No is Seifert-fibered. It now follows from Scott's theorem in [24] that No 
is itself Seifert-fibered. 

Now suppose that p(Z) { {1}. Note that p(H) has an element of infinite 
order; in fact, by a theorem due to Schur [8, Theorem 36.2], any finitely 
generated, infinite subgroup of GLn(C) has an element of infinite order, and it 
follows easily that the same is true for subgroups of PSL2(C). If y is an element 
of H such that p(y) has infinite order, and z is a non-trivial element of Z, then y 
and z generate a free abelian subgroup of rank two in H C qr(NO). Hence in No 
there is an essential singular torus, i.e. a map f: T2 -, No inducing a monomor- 
phism of fundamental groups. 

We now apply Theorem 3.1 of [27]. Recall that a group is residually finite if 
the intersection of all its finite-index subgroups is the trivial subgroup. In [27], an 
infinite group is said to be " half-way residually finite" if it contains subgroups of 
arbitrarily large finite index. By a theorem due to Mal'cev [18], every finitely 
generated matrix group over a field is residually finite; thus the infinite group 
p(H) is residually finite, and it follows at once that qr(No) is half-way residually 
finite. According to [27, Theorem 3.1], in any closed orientable 3-manifold No 
with half-way residually finite fundamental group, we have the following "torus 
theorem": every essential singular torus f in No is homotopic to a map g such that 
g(T2) is contained in a Seifert-fibered submanifold I of No with incompressible 
boundary. If a = 0, then 2 = No, and so No is Seifert-fibered. If a # 0, 
then No is sufficiently large, and so No is Seifert-fibered by Waldhausen's 
theorem. LI 

5.3.2. PROPOSITION. Suppose that ri > 5 for some i. Then 7r1(N) either is 
polycyclic or contains a free subgroup of rank 2. 

Proof If 'r2(N) # 0, then 7r1(N) is isomorphic to Z or to a non-trivial free 
product. But Z and Z2 * Z2 are polycyclic, and any other non-trivial free product 
contains a rank-two free subgroup. Thus we may assume that r2(N) = 0. 
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One of the alternatives of 5.2.4 must hold. First consider the case that N 
contains an incompressible torus. Then since 7T2(N) = 0, N is homotopy-equiva- 
lent to a Haken manifold. It is shown in [11] that the fundamental group of a 
Haken manifold either is polycyclic or contains a free subgroup of rank 2. 

Next consider the case that g (N) has a subgroup H of finite index which 
admits a representation in PSL2(C) with infinite image. 

It is a theorem due to Tits [32] that every subgroup of GLn(C) has either a 
solvable subgroup of finite index or a free subgroup of rank 2. It follows easily 
that the same is true for subgroups of PSL2(C). If p(H) has a free subgroup of 
rank 2, so does H. Hence we may assume that p(H) has a solvable subgroup of 
finite index. It must then contain a subgroup of finite index whose abelianization 
is infinite. Hence 7T,(N) has a subgroup of finite index which admits a homomor- 
phism onto Z. Since 7T2(N) = 0, it follows that N is the connected sum of a 
virtual Haken manifold N* with a homotopy 3-sphere. 

By 4.2.2, either N* is a Haken manifold, or is homotopy-equivalent to a 
hyperbolic manifold, or is Seifert-fibered (and has infinite fundamental group). 
We have seen that in the first case, 7T,(N) = 7T,(N*) is polycyclic or contains a 
free subgroup of rank 2. In the second case, 7T,(N*) has a natural representation 
in PSL2(C). The image of this representation cannot have a solvable subgroup of 
finite index, because every solvable subgroup of PSL2(C) has a subgroup of finite 
index that acts reducibly on C2, and we saw in Section 3 that the natural 
representation in PSL2(C) of the fundamental group of a hyperbolic manifold of 
finite volume is irreducible. Hence by Tits's theorem, 7T,(N) contains a free 
subgroup of rank two. If N* is Seifert-fibered and has infinite fundamental group 
then g1(N*) has a normal subgroup K such that 7T,(N*)/K is an infinite Fuchsian 
group. It is not hard to show (by either an elementary argument or one based on 
Tits's theorem) that an infinite Fuchsian group either is polycyclic or contains a 
free subgroup of rank 2. Hence the same is true of 7T,(N*). 

There remains the case that M - L is the connected sum of a Seifert fibered 
space Q and a closed 3-manifold 2. Then by Lemma 5.2.3, 2 is a homotopy 
3-sphere. It follows that N is the connected sum of a Seifert-fibered space N* and 
a homotopy 3-sphere. If the Seifert-fibered space N* has an infinite fundamental 
group, we have already seen that the conclusion of the proposition is true. 

Now suppose that 7T,(N*) is finite. Then the universal covering of N* may 
be identified with S3; and since Q is Seifert-fibered, the action of IF on S3 
induced by its action on N is linear. Thus IF is isomorphic to a subgroup Ir* of 
S0(4) which acts on S3 in such a way that some stabilizer has order > 5. 

There is a two-sheeted covering map p: S3 X S3 -> S0(4) defined by 
p(a, f,)(x) = a X /-', where S3 is identified with the group of unit quaternions. 
For i = 1,2, define qi: S3 X S3 _> S3/{ +1} to be the projection to the i-th 
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factor composed with the quotient map. The condition that J* contain a 
stabilizer of order > 5 is easily seen to imply that qj(p-l(F*)) contains an 
element of order > 5 for i = 1, 2. The only finite, nonsolvable subgroup of 
S3/-+ 1} 0t S(3) is the group d5 of symmetries of the regular icosohedron, 
which has no elements of order > 5. Hence the groups qj(p- (r*)) are solvable; 
therefore F is polycyclic, and in particular so is 7T,(N). LI 
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